AD-A10% 252 INTERNATIONAL BUSINESS SERVICES INC WASHINGTON DC F/6 9/2
US ARMY SOFTWARE SYMPOSIUM (2ND) HELD AT WILLIAMSBURGs VIRGINIA==ETC(U)
197 S M TAYLOR DAAK70=78~D=0030
[

UNCLASSIFIED

SECOND
ADA) 044152
UsS. ARMY
SOFTWARE

SYMPOSIUM

DTIC

ELECTE
SEP 161981
OCTOBER 25-27 1978 S D

WILLIAMSBURG. VIRGINIA

SPONSORED BY %
THE U.S. ARMY {
COMPUTER SYSTEMS W,

T T VT

UNCLASSIEIED ey ? 5
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) \ 7

REPORT DOCUMENTATION PAGE e T o RN
1. BEPORT NUMBER 2. GOVY Acc{;go g 3. RECIPIENT'S CATALOG NUMBER

o) AT N

. TT (and Subtitle)

5. TYPE OF REPORT & PERIOD COVERED

e e S s lt

}
Second 'S Army Software 9ympos1um f- :) M- l; Final - 25-27 October 1978
Q\' Williamsbara, Vireginia o 25 o 7 (\./ ’.\ X 3 ;ERFOR}NG ORG. REPORT NUMBER

“f7. AuTHOR(-) -\WI-WEW”
4 M“-*.—--“. ’ - \’

' [\) stanley M. Taylor; ' |9 | DAAK70-78-D-p030 !
A . /, \’

; i

e - ...
. 10. PROGRAM ELEMENT, PROJECT, TASK
9 PERF’ORMING' ORGANIZATI?N NAME AND A'DDRESS AREA S WORK UNIT NUMBERS
International Business Services, Inc.
i 1090 Vermont Avenue, NW Suite 1010

Washington, D.C. 20005 { Vv o)
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
US Army Institute for Research in Management 25-27 October 1978
Information and Computer Science (AIRMICS), 13. NUMBER OF PAGES i

115 0O'Keefe Building, GIT, Atlanta, GA 30332 854
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Otfice) 1S5. SECURITY CLASS. (of this report)

UNCLASSTFIED .

T ; 15a. DECL ASSIFICATION/ DOWNGRADING
\ ‘{ SCHEDULE
~— | r

Or|

16. DISTRIBUTION STATEMENT (of thl. R.p

DISTRIBUTION SR A Dm RIS CI L
Approved le [ORARIRE SN Y17
Distriloation Tl el

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, {f different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverae side if necessary and {dentily by block number)

Functional System Requirements, Human Factors, Life Cycle Management,
Security, Softwwre Engineering Tools, Testbeds, Interoperability,
Tradeoffs, Graphics, Verification, Standardization/Commonality,
Survivability.

20. ABSTRACT (Coutinue am reverse side }f neceesary suod identify by block number)

The following sessions were conducted during this symposium:

Functional Systems Requirements
Human Factors

Requirements 1

4‘.
Life Cycle Management JVN\

-7
o

PD ,“. ,, 1473 EDIMON OF ! NOV 65 1S OBSOLETE

2 7
UNCLASSIFIED J “ P, Z
SECURITY CLASSIFICATION OF THIS PAGE (Whent Data Entered)

UNCLASSIELED
SECURITY GLASSIFICATION OF THIS PAGE(When Data Entered)

Security

Software Engineering Tools § Methods 1
Requirements 1I

Patriot Software System

Testbeds

Software Engineering Tools § Methods 11
Interoperability

Management Control Technology

Hardware/Firmware/Software Tradeoffs

Graphics

Formal Methods of Software Verification and Maintenance
Auto Test/Diagnostic Equipment § Software

Computer Architecture Standuardization/Commonality

Reliability/Survivability

Accession For -
———— o e . - ———

NTIS GRAXI iﬁ

DTIC TAB]

Unannounced]

Justification |

By. ___~f

Dis@;ﬁbution/i

Avq{;ability Codes

Avail and/or

Dist Special

Q

UNCLASSTFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

r SECOND

.'[
:
|

US. ARMY
SOF TWARE
SYMPOSIUM

OCTOBER 25-27 1978
WILLIAMSBURG. VIRGINIA

SPONSORED BY 9%

THE US. ARMY §
COMPUTER SYSTEMS §).
COMMAND ‘xzs

SECOND U.S. ARMY SOFTWARE SYMPOSIUM
Williamsburg, Virginia
25-27 October, 1978

SPONSOR

UNITED STATES ARMY COMPUTER SYSTEMS COMMAND
(USACSC)

SYMPOSIUM DIRECTOR

R. Peyton Brown - USACSC
Integrated Software Reseanch & De-
vefopment Working Group

SYMPOSIUM CHAIRMAN

Dr. Stanley M. Taylor
Aberdeen Proving Ground

DEPUTY SYMPOSIUM CHAIRPERSON

Dr. John Staudhammer
Anmy Research Institute

SYMPOSIUM PLANNING COMMITTEE

Merton J. Batchelder
u.S. Aumy Compute: Systems Command

James M. Jones IL
U.S. Anmy Engineens Waterways
Experiment Station

LTC Roy Busdiecker
Office of Assist. Chief of Staff
gorn Automation & Communication

John M. Cole
Centen for Tactical Computer Sciences

Allan H. Curry
u.s. Anmy Institute in Management
Information & Computer Sciences

Jean N. Hooper

Aumy Research Institute

Stephen P. Kroll
Deputy Chief o4 Stagf forn Reseanrch
Development and Acquisition

Sil Pelosi
Centern fon Tactical Computern Sciences

Dr. N. Radhadrishnan
Uu.S. Aumy Engineens Wateruways
Experniment Station

Robert Rosen
Harry Diamond Labs

Norman J. Taupeka
Center fon Tactical Computern Sciences

Proceedings Prepared/Delivered By
International Business Services, Inc.

Under Contract DAAK 70-78-D-0030

TABLE OF CONTENTS

TITLE PAGE
AGENDA ix
EXECUTIVE SUMMARY xix
SESSION SUMMARIES, ABSTRACTS & POSITION PAPERS 1

FUNCTIONAL SYSTEMS REQUIREMENTS

Chairman: Ray Ketchum
SESSION SUMMARY 1
Battlefdield Systems Architecture
Dennis P. Mahoney 2
Battlef<ield Automation Management Program 9

Dennis P. Mahoney
Auny Battlefield Intenface Concept 12

CPT John Ratzenberger

HUMAN FACTORS
Chairperson: Jean Hooper

SESSION SUMMARY 23
A Review of Factons Which Influence Sogtware
Development Perfonmance 24

Jean Hooper

Human Factons 4in Query Language 41
Lawrence M. Potash

Interdisciplinany 1ssues in The Design o4
Human-Computer Interfaces 46
Raymond C. Sidorsky
REQUIREMENTS I
Chairman: Dr. Edward Lieblein

SESSION SUMMARY 54

Computer - Adlded Requirements Generation - An
Evaluation 55
Carl G. Davis

TABLE OF CONTENTS Cont'd
TITLE PAGE

An Approach to Requirements Definitions For

Real T.ime Systems 66
David Eqli
Nuts and Bolts of Sogtware Acquisition 80 f

Thomas A. Rorro

LIFE CYCLE MANAGEMENT |
Chairman: MAJ Edward H. Ely
SESSION SUMMARY 89
Toward Undernstanding The Software Life

Cycle 90 A
Dr. Victor R. Basili

The Contingency Theory Approach to The
System Life Cycle Management 99
Dr. J. David Naumann & Gordon B. Davis

SECURITY
Chairman: LTC Robert P, Campbell
SESSION SUMMARY 107

Softwane Securnity 108
LTC Robert P, Campbell

The Department of Defense Kernelized
Secure Operating System (KSOS) 119
Dr. E. J. McCauley

KSOS Executive Summary 134
Ford Aerospace & Communication Corporation

SOFTWARE ENGINEERING TOOLS & METHODS 1
Chairman: Derek S. Morris

SESSION SUMMARY 147

The Department of Defense Common Proghramming
Language Project 148
Dr. Serafino Amoroso

Ny

Ti
%
{
F
E;

TABLE OF CONTENTS Cont'd

TITLE

An Expenimental Application of The DoD
Common language to Telecommunications Systems
Design

Derek S. Morris

An Integrated System of Tools to Support
The DoD Common Language
Dennis J. Turner

REQUIREMENTS 11
Chairman: John Mitchell

SESSION SUMMARY

Developments & Problems 4in Software
Requirements
Dr. Pei Hsia & Bill Buckles

Usern Experience With a Formally Defined
Requinements Language IORL
harles R. Everhart

Software Requirements Engineerning Methodology
(SREM) Cwwrent (1978) Status
Mack W. Alford

Automated Analysis of System Specifications

Larry A. Johnson, Paul B. Merritheu &
Daniel G. Smith

PATRIOT SOFTWARE SYSTEM

Chairman: Edward U. Lee Jr.

SESSION SUMMARY

TESTBEDS
Chairman: John M. Cole
SESSION SUMMARY
Emulation of Tactical Data Systems in the
Teleprocessing Design Centen
John M. Cole

Interfacing C3 Facilities to the Arpanet
Marvin Schwartz

PAGE

156

179

188

189

21

220

235

259

261

263

277

o

TABLE OF CONTENTS Cont'd

TITLE PAGE

Software Development Suppont System (SDSS) 299
Bernard Newman & Roy Mattson

SOFTWARE ENGINEERING TOOLS & METHODS 11
Chairman: Or. #ehdi Jazayeri
SESSION SUMMARY 315

Current Developments in Program Verdification 316
Dr. Susan L. Gerhart

The Human Engineerning of a System Design 331
Envinonment fon the Microprocesson-Based Systems
Charles W. Rose & Donald C. Hewitt Jr.

INTEROPERABILITY

Chairman: Dwaine B. Huewe

SESSION SUMMARY 379
Interoperability Tactical Automated Systems - 380 §~
A Challenge

Dwaine B. Huewe

MANAGEMENT CONTROL TECHNOLOGY
Chairman: Allan Curry
SESSION SUMMARY 396
Post Deployment Sofiware Support for Anmy 397

Defense Systems
Ingrid A. Eldridge

A Decision - Alding System Fonr Software 420
Development Management
Donovan Young

A Business Approach to Management and 425

Contrnol of the Systems Development Process
L. T. Herrman

HARDWARE/FIRMWARE/SOFTWARE TRADEOFFS
Chairman: Dr. Serafino Amoroso

SESSION SUMMARY 460

vi

it o

1 e g e e ey CITY TSI TR G LT A1 e p—————

ey — v e — =

TABLE OF CONTENTS Cont'd

_TITE

A Tactical AN/GYK - 17 Emulaton
Edward Beach

Technology Upgrade of the Existing Systems
Peripherals
Jeffrey Yohay & Martin Wolfe

A Case Study of the Software/F.iumware Development

for a Microprocessing ~ Based Computen
James E. Scott

GRAPHICS

Chairman: Dr.

SESSION SUMMARY

Notes on Graphic Standards
Dr. Bertram Herzog

Interactive Graphics
James M. Jones

Three Dimensional Geometrny Generation
With a Practical Application
Fred T. Tracy

Coherence Concepts 4in Computern Synthesized
Real Time UVisplays
Cr. John Staudhammer

N. Radhakrishnan

PAGE

461

485

495

517

518

526

540

562

FORMAL METHODS OF SOFTWARE VERIFICATION AND MAINTENANCE

Chairman: Norman J. Taupeka

SESSION SUMMARY

A Strwcture fon Development Verdfdication and
Validation Software Systems

Jon C. Jervert

Verification & Validation of Tactical Systems

Charles R. Lindsey & Joseph W. Doria

Software Testing at the System Level
J. Gary Nelson

580

581

623

641

TABLE OF CONTENTS Cont'd

TITLE

AUTO TEST/DIAGNOSTIC EQUIPMENT & SOFTWARE

Chairman: Milton Tenzer

SESSION SUMMARY

Opal - A Modean Language for Tesl Programming
Helmuth Kaunzinger

Automatic Genenation of Test Programs In Atlas
Noah S. Prywes

Some 1ssues Related to Computer System
Built-In-Test
J. B. Clary & A. R. Jai

COMPUTER ARCHITECTURE STANDARDIZATION/COMMONALITY
Chairman: Frank E. Ward

! SESSION SUMMARY

Lige Cycle Cost Analysis of Instruction-Set

Architecture Standardization fon Military

Computern-Based Systems
Dr. Harold S. Stone

A Proposed System of Buses for the
: Military Computer Family

ﬁ William E. Burr
3

; Evaluation of Alternative Computer Architecture:
: An Overview of Three Studies
‘ William Dietz

RELIABILITY SURVIVABILITY
1 Chairman: Dan Hocking

% SESSION SUMMARY

Adaptive Testing
Ray L. Stone

APPENDIX

ATTENDEE LIST

665

666

682

695

710
m

751

777

790
791

PAGE

THE SECOND U.S. ARMY SOFTWARE
SYMPOSTUM

October 25-27, 1978
Williamsburg, Virginia

AGENUDA

B TIME EVENT PLACE

WEDNESDAY, OCTOBER 25

Noon-6:00 PM Registration West Gallery
1:30-5:00 PM Microprocessing Jamestown
Workshop

Dr. James Gault
Dr. Wesley Snyder
North Carolina State University

THURSDAY, OCTOBER 26

8:00-11:00 AM Registration West Gallery

3 8:30-10:00 AM OVERVIEW Jamestown

Welcome Address
BG Leonard J. Riley

INTRODUCTIONS

Dr. Stanley Taylor
Symposium Chairperson

The Defense System
Software Management Proghram--
A Balance Between
Management and Technofogy

i KEYNOTE SPEAKER: Barry C. DeRoze
; Manager of Advanced Systems
TRW Defense and Space System Group

ix

TIME EVENT

Sthategy fon Management
0
Defense System Compuler Resowrces

KEYNOTE SPEAKER: H. Mark Grove
Acting Assistant for Defense System Software
Office of Deputy Undersecretary of Defense
(Acquisition Policy)
Directorate of Materiel Acquisition Policy

10:00-10:30 AM BREAK
10:30 AM-Noon PLENARY SESSIONS

o FUNCTIONAL SYSTEMS REQUIREMENTS
SESSION CHAIRPERSON: COL. Ray Ketchum
TRADOC
Anmy Batitlegield Automation Architecture

Major James H. Helberg
Dennis P. Mahoney
USACACDA, Fort Leavenworth
Aumy Battlegield Intenface Concept

Major M. W. Robinson
Captain John T. Ratzenberger
USACACDA, Fort Leavenworth

Techniques forn Contrnofling Proliferation

of
Automation on the Battlegield
Major Richard D. James
Dr. Edward R. Fowler
USACACDA, Fort Leavenworth
o HUMAN FACTORS
SESSION CHAIRPERSON: Jean N. Hooper
Army Research Institute
Human Perfornmance in Software Development
Jean N. Hooper
Army Research Institute
Human Factons in Query Language

Lawrence M. Potash
Army Research Institute

PLACE

Yorktown

Jamestown

TIME

THE SECOND U.S. ARMY SOFTWARE
SYMPOSTUM

October 25-27, 1978
Williamsburg, Virginia

AGENTLA

EVENT

Noon-6:00 PM
1:30-5:00 PM

8:00-11:00 AM
8:30-10:00 AM

WEDNESDAY, OCTOBER 25

Registration
Microprocessing
Workshop

Dr. James Gauit
Dr. Wesley Snyder
North Carolina State University

THURSDAY, OCTOBER 26

Registration

OVERVIEW

Welcome Address
BG Leonard J. Riley

INTRODUCTIONS

Dr. Stanley Taylor
Symposium Chairperson

The Defense System
Software Management Program--
A Balance Between
Management and Technology

KEYNQOTE SPEAKER: Barry C. DeRoze
Manager of Advanced Systems
TRW Defense and Space System Group

ix

PIPIUNEINUEEE

PLACE

West Gallery

Jamestown

West Gallery

Jamestown

TIME EVENT

Issues An Human - Computen Interaction

Raymond C. Sidorsky
Army Research Institute

Noon-1:30 PM LUNCH
Deli Buffet

1:30-3:00 PM PLENARY SESSIONS

e REQUIREMENTS I

SESSION CHAIRPERSON: Dr. Edward Lieblein
CENTACS

Computern Alded Requirements Generation
- An Evaluation

Carl G. Davis
BMD Advanced Technology Center

An Approach to Requirements Deginition
For Real-Time System

David Eqgli
U.S. Army Communications Research
and Development Command
Center for Tactical Computer Systems
Software Engineering Division
Fort Monmouth

Nuts and Bolts of Software Acquisition

Thomas A. Rorro
U.S. Army Electronics Research
and Development Command
Beta Joint Project Office
Integration Division

e LIFE CYCLE MANAGEMENT

SESSION CHAIRPERSON: Edward H. Ely
AIRMICS

Toward Understanding the Software Life Cycle

Victor R. Basili
Department of Computer Science
University of Maryland

Modeling's Role in Determindng
Sogtwane System Complexity

Thomas G. DelLutis, Ph.D
Department of Computer
and Information Science
The Ohio State University

Xi

PLACE

Main Dining Room

Locations to be
listed in West Gallery

TIME EVENT PLACE

Contingency Theory Approach
To

Systems Life Cycle Management

J. David Naumann
&
Gordon B. Davis
University of Minnesota

e OPERATING SYSTEMS SECURITY
SESSION CHAIRPERSON: LTC. Robert P. Campbell
DAMI -AM

The Department of Defense
Kernelized Secure Operating System
(KS0S)

E. J. McCauley
Ford Aerospace and Communications Corporation
¢ SOFTWARE ENGINEERING TOOLS & METHODS I
SESSION CHAIRPERSON: Derek S. Morris
The Department of Defense
Common Proghamming language Project

Serafino Amoroso
CENTACS
Fort Monmouth

An Experimental Application
0

The DCD Common Language
to
A Telecommunications System Design

Derek S. Morris
CENTACS
Fort Monmouth

An Integrated System of Tools
to Support the DOD Common Language

Dennis J. Turner
CENTACS
Fort Monmouth
3:00-3:30 PM BREAK

3:00-5:00 PM PLENARY SESSIONS CONTINUED

N e

TIME

EVENT PLACE

¢ REQUIREMENTS II

SESSION CHAIRPERSON: John Mitchell
AIRMICS

Developments and Problems
in
Software Requirements

Pei Hsia &
BiTT1 Buckles

User Expenrience
with a
Formally Defined Requirements Language
{IORL)

Charles R. Everhart
Teledyne Brown Engineering

Sogtware Requirements Engineening Methodofogy

(SREM)

M. W. Alford
TRW Defense and Space Systems Group

Automated Analysis of System Specdfications
Dr. Larry A. Johnson
Dr. Paul B. Merrithew

Mr. Daniel G. Smith
LOGICON, Inc.

e PATRIOT SOFTWARE SYSTEM

Edward U. Lee, Manager
Patriot Software Development
Missile Systems Division
Rayethon Company

o TEST BEDS

SESSTON CHAIRPERSON: John M. Cole
System Validation Division
CENTACS

Emulation of Tactical Data Systems
in the
Teleprocessing Design Centen

John M. Cole
CENTACS

Internfacing CS3 Facilities
Zo the Arpanet

Marvin Schwartz
CENTACS

xiii

A

TIME EVENT PLACE

Software Development Support System
(SDSS)

Bernard Newman
Roy Mattson
CENTACS

o SOFTWARE ENGINEERING:
TOOLS AND METHODS II

SESSION CHAIRPERSON: Dr. M. Jazayeri
AIRMICS
and
The University of North Carolina

Curent Developments in Program Verdfication

Susan L. Gerhart
Information Sciences Institute
University of Southern California

The Human Engineering
0§ a
System Desdign Envirnonment
gon
Microprocesson-Based Systems

Charles W. Rose
Donald C. Hewitt, Jr.
Case Western Reserve Univeristy

6:00-7:00 PM ATTITUDE ADJUSTMENT HOUR
7:00-9:00 PM BANQUET Jamestown

e INTRODUCTION

Dr. John Staudhammer
Deputy Symposium Chairperson

The Chatlenge of Sogtware Development
BANQUET SPEAKER: MG Clay T. Buckingham

FRIDAY, OCTOBER 27

8:30-10:00 AM PLENARY SESSIONS Locations to be
listed in West Gallery

o INTEROPERABILITY SESSION

SESSION CHAIRPERSON: Dwaine B. Huewe
Director
Center for Systems Engineering and Integration
CENTACS

Xiv

o gt N A

TIME EVENT

o MANAGEMENT CONTROL TECHNOLOGY

SESSION CHATRPERSON: Allan Curry
AIRMICS

Post Deployment Software Support
gon Aumy Defense Systems

Ingrid A. Eldridge
Systems Validation Division
CENTACS

A Decision-Adiding System
gor
Software Development Management

Donovan Young
AIRMICS

A Business Approach to Management
* and
Contiwol 0§ the Systems
Development Process
L. T. Herrmann
Manager
Systems Analysis and Development
Shell 0i1 Company

o HARDWARE/FIRMWARE/SOFTWARE TRADEOFFS

SESSION CHAIRPERSON: Dr. Serafino Amoroso

Software Engineering Division
CENTACS

A Tactical AN/GYK-127 Emulaton

Edward J. Beach
Systems Validation Division
CENTACS

Tenhnofogy Upgrade
0f
Existing System Periphenals
Jeffery S. Yohay
and
Martin I. Wolfe

Software Engineering Division
CENTACS

XV

PLACE

PO pYTES" SV FTPOSNE T

Y T —y—

TIME EVENT

A Case Study of the
Sogtwane/Finmwarne Development
gorn a
Micrnoprocesson-Based Computen

James E. Scott
Missle System Software Center
U.S. Army MIRADCOM
Redstone Arsenal

e GRAPHICS

SESSION CHAIRPERSON: Dr. N. Radhakrishnan
COE

GRAPHICS STANDARDS

Bertram Herzog
Director
University Computing Center
University of Colorado

GCS AND GRAPHICS Standandization
An the
U.S. Aumy Conps o4 Engineens

James M, Jones 11
Research and Development Software Group
ADP Center

Three Dimensional Geometry Sogtware Group
with a Practical Application

Fred T. Tracy
U.S. Army Corps of Engineers

Cohenrence Concepts in Computer Synthesized
Real~Time Displays

John Staudhammer*
U.S. Army Research Office

*(0n leave from North Carolina State University)

10:00-~10:30 AM BREAK

XVi

PLACE

TIME EVENT PLACE

10:30-Noon PLENARY SESSIONS

i e TESTING THROUGH FORMALIZED METHODS
OF REQUIREMENTS AND PROCEDURES

‘ SESSION CHAIRPERSON: Norman J. Taupeka
Chief
X Systems Engineering Division
CENTACS

A Strwucture gon Developing Verdigiable
and
Validation Software Systems

Jon C. Jervert
Systems Engineering Division
CENTACS

Verigication and Validation
0
Tactical Systems
LTC. Charles R. Lindsey
and
Joseph W. D'Oria
CORADCOM
Sogtwane Testing at the System level

J. Gary Nelson
Headquarters
U.S. Army Test and Evaluation Command

e AUTOMATIC TEST AND DIAGNOSTICS
SESSION CHAIRPERSON: Milton Tenzer
CENTACS
OPAL - A Mondern Language fon Test Programming

Helmuth M. Kaunzinger
Software Engineering Division
CENTACS

Automatic Generation of Test Programs Ain Atlas

Noah S. Prywes
Professor of Computer Science
University of Pennsylvania

Some 1s3ues Related fo Computern System
Built-4in-Test

J. B. Clary
I A. R, Jai
Research Triangle Institute

XVii

-__f_ __,,M‘
|

TIME

EVENT

Noon

Noon-3:00 PM

e COMPUTER
ARCHITECTURE/STANDARDIZAT ION/COMMONALITY

SESSION CHAIRPERSON: Frank E. Ward
CENTACS

Lige-Cycle Cost Analysis of Instruction-Set
Architecture Standarndization Fon MiLitary
Computen-Based Systems

Harold S. Stone
University of Massachusetts
and
Aaron Coleman
U.S. Army CORADCOM

A Proposed System o4 Buses
For the M{Litary Computer Family

William E. Burr
U.S. Army Communications
Research and Development Command
Fort Monmouth

Evaluation o4
Altennative Computer Architectures
An Overview of Three Studies

William Dietz
Department of Computer Science
Carnegie Mellon University

e RELIABILITY/SURVIVABILITY

SESSION CHAIRPERSON: Dan Hocking
AIRMICS

MUTATION ANALYSIS: Recent Proghess

Dr. Richard DeMillo
School of Information and Computer Science
Georgia Institute of Technology

Adaptive Testing

R. L. Stone
General Research Corporation

FORMAL END OF SYMPOSIUM
OPEN FORUM

xviii

PLACE

Spencer's Annex

EXECUTIVE SUMMARY
By

Dr. Stanley M. Taylor
Symposium Chairman

The Second Software Symposium, sponsored by the US Army Computer Systems

Command via the Army Integrated Software Research and Development (ISRAD) Work-

ing Group, was held on 25-27 October 1978 in Williamsburg, Virginia. The ISRAD
Working Group, established in 1974, having representatives from development
agencies which are performing computer software research and development, and using
gencies, particularly Program Managers' Offices, etc., were invited to partici-

te, in working group meetings to provide requirements guidance and to identify

prxblems from the users point of view.

The objectives of the .ISRAPD-Werking Group include the following:
: 1€ the tols

] To identify Software Research and Development Goals which

satisfy the needs of the using agencies.
Y By T

® //'To respond to the software needs of Army Project Managers and

Systems Developers by concentrating on software development
. and maintenance problems.)

® ~ To identify unnecessary duplication of effort and gaps in
Research Programs which need to be addressed in ongoing and
planned R&D efforts.

e "“‘\—\/

) To ensure that Software Research and Development is made
visible and addressed separately from other R&D projects. .
A s

e ~To provide the Army focal point for coordinating Software
Research and Development.)
o~ ‘ i

o To serve as a forum for information exchange on Software
Research and Development, and to ensure that results of
Software Research and Development efforts are disseminated
to potential users.

This Symposium series ,rovid ne of the many vehicles utilized by the ISRAD
Working Group in the accomplishnment of each of these objectives.

The Army's Second Software Symposium was a successful continuation of
the precedents set in the objectives for the first symposium held in May 1977,
namely:

] Provide recurring formal and informal meetings of the members of
the ISRAD Community -- managers, developers, and users ~- with
emphasis on an appropriate environment for informal dialogs which
establish mechanisms for continuation of technical exchanges
between members of the community.

Xix

° Present recent developments in the Software R&D Programs --
including particularly those areas which have received little
or no emphasis in current programs.

) Develop an ISRAD Community awareness.
) Provide an access to the ISRAD R&D programs.

The Symposium Organization Committee, under the aegis of the ISRAD Work-
ing Group, met approximately eight times over a period of fourteen months to
develop the agenda, determine attendees, select speakers and design the format
by which to process the content of the two-day meeting. The format of the
Symposium was tailored to highlight the DOD Software R&D Technology Plan
(September 1977). However, several areas not addressed by the DOD plan,
but which were deemed by the ISRAD Working Group to be important enough
to be included, were incorporated into the final agenda. The additional
program areas are concerned with Security, Human Factors, and Graphics.

These latter areas represent particular areas which were largely ignored
in the Technology Plan, but it is the recommendation of the ISRAD Working
Group that they should be included in further evolutions of that Plan.

The two-day Symposium was preceeded by a special four-hour micro-~
processing workshop entitled "Microcomputer Tutorial -~ The View Looking
Down", presented by Professors James Gault and Wesley Snyder from North
Carolina State University. This workshop proved to be extremely popular
as well as informative to those able to attend it.

The Symposium was organized in a series of plenary sessions and a
series of parallel technical sessions in order to cover the broad spectrum
of topical areas selected for this year's agenda. BG Riley, Deputy Command,
USACSC, made the welcoming address, identifying the above-mentioned objectives
and introduced the Symposium Chairman, Dr. Stanley M. Taylor of Ballistic
Research Laboratory, ARRADCOM/APG, Maryland. Dr. Taylor, in turn, introduced
the two keynote speakers, Mr. Barry DeRoze, TRW, formerly with the DDR&E of
DOD, and Mr. Mark Grove, his replacement.

It should be noted that the choice of keynote speakers was in consonance
with the general theme of the Symposium. Mr. DeRoze traced the evolution of
establishment of the DOD Defense Systems Software Management Program, and the
resultant evolution of the requirement for centralized program monitorship
within services which led to the development of the Army ISRAD Working Group
and its R&D Program, as the Army response to this requirement. As one of the
principal authors of the DOD Plan, Mr. DeRoze presented the background behind
the plan as well as his perception not only of its impact on specific defense
systems and on industry policies, practices and procedures, but also presented
an assessment of application of the plan, from both the government and industry
viewpoints. Emerging issues of standardization and microprocessor management
were identified.

Mr. Grove confirmed the intent of the DOD to continue close monitorship
of DOD Software R&D activities and the need for such a program to provide
DDR&E with backup data for Congressional justification of R&D programs in
this broad area of technology development. Mr. Grove noted that practically
every significant modern defense system is reliant upon digital computation

XX

elements or subsystems for either. its native operation or its integration
into the tactical, strategic or C'1 environment. Consequently, a major
fraction of the acquisition costs of modern systems is going for the
associated embedded computer resources and the similar fraction of the
logistic support cost is devoted to this element of any given system. He
noted that DOD has established a policy initiative with DODD 5000.29 which
mandates the use of higher order languages (HOL) for preparation of defense
system software for embedded computer resources. The objective is to get a
grasp on the estimated $3 billion annual expenses for software and to improve
the availability and modifications/update/turnaround times. DODD 5000. 31
takes the policy a step further and restricts the selection of allowable
HOL's for future systems to a manageable few from the hundred or so now in
use.

Mr. Grove noted that there is almost universal acceptance of the need
for improved discipline in the development, acquisition and support of
embedded computer resources, but these new policy initiatives have met the
not unexpected noticeable but tractable resistance always experienced by
changes in policy. The next step in the strategy is via DODD 5000.xx, to
exercise similar policy initiative to explore follow-on in the area of
computer architecture. Mr. Grove emphasized that the message of these
policy directives is a simple one: Optimum decision on a per-system basis
do not necessarily lead to either the best or most effective force/systenm,
when the full life cycle is considered. 1In general, Mr. Grove noted, the
principle of the use of prudent management discipline across the total DOD
program with respect teo the totality of embedded computer resources appears
sound. Mr. Grove further noted that it is his expectation that the DOD
Software R&D Technology Plan will remain a living document and continue to
evolve as experience dictates. '

MG Buckingham, Commander, USACSC, made the banquet address, high-
lighting the future requirements of meshing of communications and data
processing and further noted that the areas of technology which underpin
the Software R&D requirements of the Army and DOD are in a most difficult
transition period, from that of what has been largely initial and necessary
discovery type research to one of a more disciplined nature. He challenged
the Army R&D community to make a 'quantum jump' in efforts to convert pro-
gramming from an art to more of an engineering science -- particularly in
the applications area of interest to the developers of Army and DOD weapons
systems.

SUMMARY OF FINDINGS

Presentations evoking the most interest were the plenary sessions on
Security, Human Factors, Graphics and Life Cycle Management.

o Security: The session highlighted the need for Army users to
develop detailed security specifications for their systems in
order that technological design can be tailored to their re-
quirements. (The DDR&E Technology Areas did not at the time
of the Symposium include security in its areas of emphasis.
However, the need and interest within the Army exists and,
accordingly, this session was a significant part of the agenda).

XX 1

. Human Factors: The contents of this session focused on factors
influencing performance, especially productivity, in software
development. Prescriptive aspects of project management such
as team organization and use of well-defined software develop-
ment techniques. It was suggested that, within ISRAD, multi-
disciplinary working groups be formed to determine human inter-
face requirements early in the system development cycle.

° Graphics: This session presented graphics work in two areas that
are pertinent to the Army mission. The first area concerned inter-
active computer graphics applications in 3-D geometry generation
and display. One presentation described a graphics software
package that provides an engineer with the capability of generating
and editing three dimentional structures. Another, by Dr. Staudhammer,
described a display device and supporting software for the display
of color and black and white three-dimentional objects directly
from a mini~computer to studio-quality television. The second
area covered the necessity of developing a set of standards for
graphics software.

° Life-Cycle Management: Several aspects of this session reaffirmed
the findings and recommendations of the Second Software Life
Cycle Management Workshop. Topics put forth and discussed here
included a call for construction of standardized definitions,
terms, and classifications or taxonomies. A systematized view
of the life cycle structure was presented and linked to the use
of automated management tools.

SUMMARY OF RECOMMENDATIONS

The following are consensus recommendations expressed by the Symposium
leadership, participants and attendees. 1In line with the general objectives
of the ISRAD Working Group, these recommendations should reflect on and have
impact on potential future state-of-the-art of the ISRAD Program. In the
future, the Army should:

® Expand upon the thesis of MG Buckingham's challenge to accelerate
the development of software and programming skills from an art to
more of an engineering science.

. Include the concept of networks and their attendant problems in
future research programs, as recommended by MG Buckingham.

) Conduct a Human Factors review to cover human/machine user inter-
action and also language design.

o Analyze the role of the user (frequently the Project Manager)
in protecting his interest during rapid technological growth -~
that is, how to keep the technological process from subverting
the needs of the users, while at the same time providing as
much of the new technology for his requirements as is feasible.

. Study ways of cost reduction in the field of software engineering.

xxii

Emphasize meshing of communications technology requirements
with the software development.

L) Enhance compatibility of software R&D among various Army
organizational elements.

. Identify problems in estimation and development of resource
requirements and testing validations procedures as applied to
management information systems.

. Identify problems in estimation of life cycle costs over the
entire life cycle of the proposed system -- include training
costs as well as resource requirements to accomplish life cycle
maintenance.

] Identify problems with interoperability between various systems
which must be integrated in any overall battlefield environment.

Finally, it may be stated that the Symposium was an unqualified success
in meeting its objectives. That is, the dialogue between various components
of the development community and the user community within the Army did take
place. We trust that the technical and programmatic exchange will continue
on an informal basis until the next Symposium.

xxiii

"|r—“~ - - : - T

SECOND
US. ARMY

S?/OFTWARE E. Marie Smith of International Business
MPOS’UM Services welcomes new dttendeces to the

registration area.

Dr. Stanley Taylor, Symposium
Chairperson and Mr. Mert Batchelder of
USACSC discuss upcoming events of the

first day.

Symposium participants, Jean Hooper,
Norm Taupeka and Ray Sidorsky,
examine the agenda.

XXiV

Jean Hooper delivers her
presentation on A Review of Factors
which Intluence Software
Development Pertormance.”

Attendees in a general session,

MG Clay T. Buckingham,
Commanding, General of USACSC,
was the Banquet Speaker.

MG Buckingham answers
questions.

Dr. John Staudhammer, Deputy
Symposium Chairperson and
Planning C ommittee member
LTC Roy Busdiecker chat with

MG Buckingham after his banquet
- speech,

FUNCTIONAL SYSTEMS REQUIREMENTS

COL Ray Ketclium
TRADOC

SESSION CHAIRPERSON: COL Ray Ketchum
TRADOC

SESSION SUMMARY

This session highlighted activities underway within the computer
development community to describe the architecture and environment within
which Battlefield Automated Systems will operate. It also addressed
TRADOC (Army) efforts to control proliferation of battlefield systems and
described their relationships (interface requirements).

The first paper (Army Battlefield Automation Architecture) was
by Major James H. Helberg and Mr. Dennis P. Mahoney. Tts relevance was
to describe for the Symposium the approach to developing an automatic
architecture as a part of the overall battlefield system.

The second paper (Army Battlefield Interface Concept) was by
Major M. W. Robinson and Captain John T. Ratzenberger. TIts relevance was
to describe for the Symposium the study of the interface/interoperability
requirements among battlefield automated systems and the relationship of
the study of automation architecture and system development.

The third paper (Techniques for Controlling Proliferation of
Automation on the Battlefield) was by Major Richard D. James and
Dr. Edward R. Fowler. Its relevance was to inform the Symposium of the
Army's methodology of controlling the proliferation of automation on the
battlefield.

Army Battlefield Automation Architecture

Major James H. Helberg
Mr. Dennis P. Mahoney

USACACDA, Fort Leavenworth

An automation architecture is conceptually unconstrained by
systems, organizations, or procedures unless automation was
considered in their development. Traditional frameworks may
be modified considerably by an automated systems network.
Therefore, a framework must be defined in which automation
can be supportive of corps objectives. Basic to describing
such a framework is the definition of information require-
ments. This will lead to a description of information flow
and suggest the rationalization of certain functions within
and among functional systems. A basic sequence of questions
must be answered. CACDA is taking steps to define the func~-
tional information requirements as well as the information
flows.

To achieve a practical automation architecture, as well as
meeting the immediate need for automation to support the
field, it is necessary to field certain BAS although they do
not fit into an architecture and then bring a comprehensive
architecture on the scene later. To begin this process, es-
sential interfaces are being defined by CACDA in the Army
Battlefield Interface Concept.

Essential to architectural development is the inclusion of
certain operational design criteria, the most important of
which is standardization. Lack of standardization is a
major problem preventing development of an automation archi-
tecture. Interoperability, CONOPS, security, RAM, and other
design criteria depend on standardization in the areas of
hardware, software, data elements, etc. The Army is embarked
on several actions to address standardization.

1

ISRAD
BATTLEFIELD SYSTEMS ARCHITECTURE

Mr. Dennis P. Mahoney
Battlefield Automation Management Directorate
United States Army Combined Arms Combat Development Activity
Fort Leavenworth, Kansas

Within the past several years, there has been a dramatic increase in
attempts to apply automatic data processing technology to problems of military
command, control, communications, and related functional areas.

This increase and the resulting rapid development of ADP systems has caused
problems in compatibility and interoperability to become potential roadblocks
to effective use of automation on the battlefield.

The purpose of this paper is to describe ongoing efforts to develop an
architecture for battlefield automation as a part of an overall systems
architecture and to relate it to other parts of such a systems architecture to
include information, communications, and management.

The term "systems architecture" is defined by the U.S. Army as follows:

SYSTEM ARCHITECTURE - The generalized description and portrayal of a
functionaT 3ySstem composed of several interacting/interoperating subsystems
arranged in such a manner as to satisfy the requirements stated in an overall
concept.

When the Army speaks of systems with respect to an architecture, it
commonly refers to information, automation, communications, and management,
all working from some standardized foundation. Although there may be other
minor considerations with respect to systems, these are considered to be the
four major elements in a systems architecture.

In order to allow development of a systems architecture, certain questions
must be answered. These might be summarized in the following Tist:

1. What jobs must be done?
Where are the jobs done?

What information is needed to do the job?

S w ~no
. . .

What is information flow pattern on the battlefield?

5. What should be the architecture for integration of functional
systems.

6. Where and how should automation be applied?

It has been the experience of the Army too often to have dealt primarily
with question six (6) without completely having answered questions one (1)
thru five (5). From these questions, it may be perceived that efforts to
apply and integrate automation on the battlefield hinge on two areas not

specifically dealing with automatic data processing (ADP)---those being
function and information.

To set the stage for this discussion, a convenient reference framework
will first be established. In order to achieve tactical units objectives, the
commander of each unit and his staff must perform certain basic functions. He
must see the battlefield, plan the operation, allocate resources, fight the
battle, and sustain the force. These functions can be arrayed in a matrix
with the battlefield functional systems currently used by the U.S. Army
Training and Doctrine Command (TRADOC) in the Battlefield Automation
Management Program (BAMP). These functional systems are maneuver, field
artillery, air defense artillery, air/ground, engineer, electronic warfare,
intelligence, communications, command and control, logistics, and
administration. Each center or school within TRADOC has been charged with
developing functional system concepts for each of ‘these functional systems.

With the five commander and staff functions arrayed on the vertical axis
and the eleven battlefield functional systems Tisted horizontally, the way
automated systems are generally applied to the battlefield at the present time
can be described. This approach, no matter how functions and functional areas
are described, basically automates current manual procedures but does not
provide for the exchange of information between the functional systems, nor
does it provide for integration of functions across the battlefield. The
result is a large number of stand-alone ADP systems, many of which support
similar functions in different functional systems.

In order to make such an approach work, extensive interoperability between
the automated systems involved is required. Unfortunately, virtually every
system has its own data elements, language, applications, hardware, and so on.
Interoperability is, therefore, almost impossible without significant
expenditures for transiational devices or so called "black boxes."

A better approach might be to integrate 1ike functions across functional
areas/systems. This means that similar functions would be rationalized and
users in any of several functional systems would have access to the same ADP
applications in support of their functions. There are several advantages to
this approach: It minimizes the number of computers on the battlefield; it
rationalizes the development of functional applications; it simplifies
interoperability; and it minimizes the burden on funds, people, and
communications. Practical problems in communications, technology, doctrine,
and organization, however, make this integrated functional approach, at best,
a long-term goal.

Thus, two broad problems must be addressed: What can be done now, and
what can be done over the long-term to achieve an integrated automation
architecture? The first thing that must be done is to recognize current
limitations and live with them. While it is widely recognized that a complete
systems architecture is needed as soon as possible, it must also be recognized
that such an architecture is not available now. The first increment of
automated systems fielded will not be an integrated, interoperable,
multi-functional architecture. It will be a series of nonstandardized

4

systems which, while perhaps not optimum, provides assistance with some of the
pressing problems which exist right now.

The second thing required now is to take positive action towards achievement
of a battlefield automation architecture. Recalling the questions raised
earlier, these must be answered in about that order to make possible an
orderly progression towards such an architecture.

In order to begin, it is necessary to refer back to the matrix described
earlier. By adding a third dimension, that of echelon of command, a figure to
operate as a tool for identifying information needs on the batt]ef1e1d can be
built (figure 1).

FUNCTIONAL INFORMATION REQUIREMENTS
[oatration 7 7 7 7 7 77
/!?"4"." [/ L] [77 / ///
oivison ///// /J / /j7 7

/7/// / ///

kJ

\

PLAN
MLOCATE
A6t
SUSTAIN

Figure 1

These needs are described in terms of input/output information for every
functional area at all echelons, corps and below. This will then serve as a
baseline for determining the various paths over which information can travel
from one point to another in any combination of commander and staff function,
functional area, and echelon and ultimately lead to an architecture for
applying automation to the information flow on the battlefield. Thus, the
first four questions from the 1ist are addressed, and the Army can proceed
with the application of automation to enhance its ability to process and
distribute information within a battlefield automation architecture.

Battlefield automation architecture as a subset of a total systems
architecture is defined as "....a series of integrated battlefield automated
system networks characterized by 1nterface/1nteroperab111ty, continuity of
operations, security, RAM, and multi-functional processing all of which are
largely achieved by standardlzat1on.“

-5~

It is important to realize that such networks may cut across traditional
frameworks of organizaiton, branch, and echelon. In a purely conceptual
framework, an automation architecture is unconstrained by systems,
organizations, or procedures which are not designed expressly for the
automated environment. This requires that a close look be taken at all these
factors when designing the automation architecture. The purpose of all Army
architectural effort is to determine how the Army can move from where it is
now towards the ideal, or at least an environment where automation is
rationally applied to enchancment of battlefield effectiveness and does so at
the least cost.

As was expressed in the definition of automation architecture, certain
characteristics are essential to a network of integrated battiefield systems.
The Army calls these operational design criteria (0DC).

The operational design criteria for ADP systems in the Army are
interface/interoperability; continuity of operations (CONOPS); security;
reliability, availability, and maintainability; and standardization. Each of
these criterion is, by itself, a major area of concern to users, developers,
and commanders at all levels and must be addressed at every stage of the
development cycle. Additionally, they are closely related so that
requirements for each must be evaluated for the effects on the others.

While each criterion is important, one may hold the key to the Army's
ability to address the others. That one is standardization. From the Army's
point of view, lack of standardization is the major problem area associated
with automation architecture development in the U.S. Army. It prevents any
real progress being made in interoperability without the use of elaborate
translational measures, as well as complicating, beyond probable solution, the
measures to assure continuity of operations under a variety of conditions.
Security of systems and data bases is also complicated by the variety of
standards now used, although the netting of automated systems in a
comprehensive architecture presents its own set of security problems.

The most obvious major problem area associated with a Tack of
standardization is the reliability, availability, and maintainability (RAM) of
hardware for a large number of unique systems under battlefield conditions.
One survey, conducted by the U.S. Army Communications Research and Development
Command, provides some insight into the magnitude of the problem. This survey
predicted that by the late 1980's the total population of battlefield
computers in only the Army may exceed 135,000 computers of all types. Numbers
of this magnitude makes it clear that the RAM problem will be practically
insurmountable without standardization.

More subtle, but no less perplexing, are the problems of software support
and maintenance. Software support for the U.S. TACFIRE system alone calls for
about 100 personnel and $7M annually. Similar burdens are implied for every
automated system fielded. Obviously, there is a serious resources problem.
Doctrine and organization for post deployment software support must be
examined. Standardization is the only way to make adequate support achievable.

What is being done to address automation standardization?

To address the problem of data element standards, the U.S. Navy has
developed a data base package for management of data element dictionaries
called the record association system/standard data element system for use by
all battlefield automated systems proponents and developers. If successful,
it will provide a means by which data element standardization can be managed.
This is a key consideration in the ability to exchange information between
automated systems.

In the area of hardware standardization, the Army is working with the
other services towards the development of a military computer family and its
associated software to provide for compatibility of procedures, as well as
commonality of hardware, for all battlefield automated systems. The magnitude
and importance of this project was illustrated earlier when we discussed the
numbers of computers projected onto the 1980's battlefield. The key to the
approach is one that defines common physical characteristics, connector
compatibility, and standard input-output functions rather than one of single
sources for equipment.

Progress is being made in the areas of message format and language.
Format standards must be continuously and rigorously applied to insure that
the message can be understood even when all the other interface elements are
present. The Department of Defense is directing an interservice program to
address this problem called the "Joint Interoperability of Tactical Command
and Control Systems” (JINTACCS).

Development of a common high-level Tanguage called DOD-1 is also
underway. There are numerous reasons why a high order language must be
developed and agreed upon.

Obviously, common computer language makes possible common operating
systems and applications programs, thus permitting continuity of operations
and rationalization of applications.

More critical, though, is the problem of computer programmers. A study by
Texas Instruments, Inc. has predicted that, given current programming
methodology, there could be a shortage of as many as 10 million computer
programmers in the U.S. by 1985. The use of high order language is a major
step to alleviate this shortage by increasing programmer productivity.

Two standardization related areas with which the Army must better come to
grips are those of integrated logistics support and source data automation.
We need to reexamine our doctrine for integrated logistics support (ILS) in
the area of training, supply, and maintenance in order to support battlefield
automated systems. In an environment where cross-attachment of units will
probably be necessary, we must be able to provide logistical support in
automation as in other areas. Training, supply, and maintenance
standardization must be addressed to provide the ability to support attached
units effectively.

In addition, we must develop compatible systems and procedures for what we
call source data automation, that is, those means by which information is
originally inserted into the automated system network. These systems and
procedures must be standardized throughout the battlefield in order that we
might be capable to input data to a variety of different systems when required.

-

In summary, it remains for the Army to commit itself to solving these
problems now (it will cost much more later) in order to make the gains in the
effective application of combat power which can result from the fielding of a
series of integrated networks of battlefield automated systems---a battlefield
automation architecture.

l

-8-

TTT TN T Y Ty | Y we————— e

ISRAD
BATTLEFIELD AUTOMATION MANAGEMENT PROGRAM

Mr. Dennis P. Mahoney
Battlefield Automation Management Directorate
United States Army Combined Arms Combat Development Activity
Fort Leavenworth, Kansas

The purpose of this paper is to describe the Battlefield
Automation Management Program (BAMP). The Army fully intends to
capitalize on automation. It provides us a means to change the odds
in a potential war in which we will probably have to fight outnumbered
and outgunned by the enemy. However, initial efforts towards
automation of the battlefield have encountered difficulties.

In April 1977, at Fort Hood, Texas, Tactical Automation Appraisal
Il took place. Two major issues emerged. First, there was no single
manager in charge of battlefield automation and second, there existed
no guiding concept for battlefield automation management.

As a result, the Vice Chief of Staff of the Army (VCSA) directed
the US Army Training and Doctrine Command (TRADOC) to establish a
single focal point to manage battlefield automation within the
following guidance, that of developing a philosophy and a methodology
to manage automated systems development, which will control
proliferation of computers on the battlefield. From this guidance
emerged the BAMP philosophy which is to optimize fighting capability.

With this background, the Combined Arms Center proceeded with
development of our methodology model. This model uses three basic
inputs to an evaluation process which results in a specific
recommendation regarding the development of each battlefield automated
system.

The management of battlefield automated systems is complicated
somewhat because the Army currently acquires its automation capability
under two different regulations, Army Regulation (AR) 18-1 and AR
1000-1. Thus, before implementing the methodology, it was necessary
to merge the Jife cycle phases of each. The result is the set of
categories identified as 1, II, or III which are Concept/Definition,
Validation/Deveiopment and Production/Installation. This enables us
to track a system from concept to fielding if systems are procured
under either regulation.

In implementing our methodology, we require the proponent of a
system to provide a series of inputs. The first, the Battlefield
Functional System Concepts, are documents prepared by each of the
eleven battlefield functional proponents identified in the systems
architecture presentation. They describe, as an example, how the
field artillery, or maneuver, functions are performed on the
battlefield. Their orientation is conceptual and functional, as
opposed to being driven by echelonment or equipment. This document
provides BAMP analysts insight into the basic actions performed by the
functional system, and explains how the system will assist the
commander with his requirements to- see the battlefield, plan his

-9~

N

e = e

operations, allocate his resources, fight the battle and sustain his
forces. Our second stream of inputs are the information shortfall
statements, also submitted by the battlefield functional proponents.

An information shortfall is that portion of the total known
information requirement which is currently not being fulfilled. The
proponents described each of their shortfalls as either a void, a
condition where the information is not available, or as a deficiency.

If the shortfall is a deficiency, they described it in terms of a
problem in either timeliness, accuracy or resolution. Resolution, in
this case, means that information may be available in a timely manner,
with a high degree of accuracy, but still does not portray the desired
picture.

The shortfalls evolve from the functional concepts mentioned above
as expressions of information required to perform missions or tasks on
the battlefield. The first two inputs just discussed provided the
Jumping off point in our evaluation of automated systems. The
evaluation actually began with the submission of our third input --
the battlefield automated system description.

This document, also prepared by the functional proponent,
describes in detail a fielded or proposed ADP system. Examples of
four battlefield automated systems are the Corps Tactical Operations
System (CTOS), Army Terrain Information System (ARTINS), Standoff
Target Acquisition System (SOTAS) and Mobile Army Ground Imagery
Interpretation Center (MAGIIC). The system description tells how the
battlefield automated system is functionally integrated, what
shortfalls it addresses, and it describes the systems resource
requirements in terms of dollars, people and communications.

From these three inputs, we have a foundation for evaluating
battlefield automated systems. The concept describes the arena in
which a system will operate -~ the shortfall describes the need -- and
system description ties it all together. Thus, the integration thread
can be carried from concept to actual fielding of any proposed
automated system. Using these inputs we filter each proposed
battlefield automated system through the system evaluation process.

Initially, we insure the proposed battlefield automated system
meets minimum operational design criteria. The system is carefully
checked for standardization, which is critical due to the number of
systems under development. Specifically, standardization is the key
to success in the next two areas shown, which are interface/
interoperability and CONOPS, or continuity of operations in the event
a system is shut down for any number of reasons. The reliability,
availability and maintainability of the system is analyzed as is the
systems proposed degree of security.

If the system meets those ODC requirements, it is further
evaluated to determine its performance, resource burden and payoff.
Proposed battlefield automation systems capabilities are evaluated to
determine if they satisfy information shortfalis. Next, the percent
of shortfall satisfaction is reviewed and, finally, the impact on

-10-~-

ot e

operational effectiveness for the proposed battlefield automated
system is analyzed.

Next, the system is evaluated with respect to burden on US Army
resources and are quantified in terms of dollars, people and
communications. Specifically, its total cost, in dollars, throughout
the acquisition 1ife cycle is estimated. All costs, to include
Research Development Test and Evaluation (RDT&E), Other Procurement,
Army (OPA), Operations and Maintenance, Army (OMA), which includes
civilian costs, and Military Personnel, Army (MPA) dollars, are
compiled.

The burden in people is analyzed to determine impact on
operations, maintenance and training. Both direct costs, such as
systems operators and post deployment software support personnel, and
indirect costs, such as vehicle operators and maintainers, are
included in this assessment.

The systems communications requirements are screened to assess
their impact. Because of the burden that battlefield automated
systems place on US Army communications resources, it is essential to
determine whether new technology is required, additions are needed in
the form of equipment capability, additional load is placed on current
communication systems, or if there is no discernable impact on our
current communications systems.

Lastly, the payoff evaluation is determined by assessing the
overall net benefit to the Army in terms of information shortfall
satisfaction versus the dollars, people and communications costs. In
addition, key factors will be highlighted with respect to potential
acquisition and operating problems, such as personnel operator
qualifications and factors relating to the previously mentioned
operational design criteria.

Upon completion of this process, which occurs three times at
various points in each system's acquisition life cycle from concept
through fielding, the final recommendations are made. The
alternatives are accelerate, continue, terminate, modify or rejustify.

To provide some appreciation of the magnitude of the BAMP, there
are approximately 70 fielded or proposed hardware and software
battlefield automated systems. Each of these systems is to be
evaluated through the Battlefield Automation Management Program.

-11-

4

Army Battlefield Interface Concept

Major M. W. Robinson
Captain John T. Ratzenberger

USACACDA, Fort Leavenworth

The Army Battlefield Interface Concept (ABIC) is an ongoing
procedure and iterative document for identifying, classifying,
describing, and consolidating all interfaces among Battlefield
Automated Systems (BAS). While ABIC1978 addresses only Army
BAS at corps level and below, future cycles will extend the
A"1IC to include joint and allied systems at all echelons.

Under the ABIC, BAS are studied to determine functional infor-
mation needs and outputs and the methods of information trans-
mittal. This review also encompasses the methodology and re-
quirements of the Battlefield Functional System Concept, and
Information Shortfalls and the BAS description. Each BAS is
compared to all other BAS and all matching inputs and outputs
are documented as potential interfaces.

The objectives of the ABIC are to:

a. Provide an objective automation architecture.

b. Promote interoperability and standardization.

c. Rationalize redundant sources and requirements.

d. Provide general and detailed guidance to system and
material developers.

-12-

- —

ARMY BATTLEFIELD INTERFACE CONCEPT
) (ABIC)

John T. Ratzenberger, CPT, U.S. Army
Battlefield Automation Management Directorate
U.S. Army Combined Arms Center
Ft. Leavenworth, Kansas

The purpose of this paper is to tie together the previous two
papers - Systems Architecture and the Battlefield Automated Management
Program - to show how the Army is moving toward an automation
architecture.

An automation architecture is a series of integrated Battlefield
Automated Systems characterized by interface/interoperability,
continuity of operations, security, RAM and multi-functional
processing; all of which are largely achieved by standardization.
From this definition, we should Tock on two key concepts-

Interface and Interoperability - as they are central topics of this
paper.

An interface is a boundary or point common to two or more
Battlefield Automated Systems or other activities where exchange of
data takes place. There are three types of interface:

- Manual extraction, transmission and entry of data from one system
to another.

- A remote I/0 device connected online to one system at the
processing site of another.

- And, an automated exchange of information directly between the
central processors of two or more systems, with or without
operator assistance.

Interoperability is the capability of Battlefield Automated
Systems to directly exchange data in a prescribed format, and to
process the data exchanged. By definition, interoperability is
achieved only by an automated interface.

Automated systems must interoperate to the fullest possible extent
due to the sheer volume - both quantity and frequency - of data to be
exchanged on the battlefieid. The fragmented system development, the
Tack of interoperability, and the effects thereof, have been described
in the previcus papers. Although the problem had been addressed for
many years by a series of meetings and studies, no viable solutions
were found - chiefly due to doctrine changes, static procedures,
and cumbersome documentation requirements. The clear need to simplify
procedures was addressed at a 30 August 1977 meeting at the Combined
Arms Center, when both users and developers jointly proposed a dynamic
procedure to identify interoperability requirements.

As a result of this meeting, HQ Department of the Army issued
guidance for the Army Battlefield Interface Concept, or ABIC, in
November 1977. This was to be an iterative document, updated yearly
as new systems emerged and requirements changed. Training and

Doctrine Command, as the combat developer, was given responsibility to
maintain and upgrade the ABIC based on Army-wide input. Army Materiel
Development and Readiness Command, as the principle materiel
developer, was given responsibility for the engineering of approved
interfaces to meet user requirements.

The purpose of the ABIC is five-fold:

- Create a simple mechanism for HQDA to approve and fund
interface and interoperability needs.

- Assist the materiel developer in funding of hardware, software
and communications to support specific links.

- Provide a document which identifies requirements for
interoperability of automated systems.

- Provide guidance to the proponents to promote interoperability
and standardization.

- Last, but most important - provide a comprehensive and objective
automation architecture supporting the whole corps battlefield.

The scope of the ABIC is broad, encompassing all Army systems
interfaces at corps and below - provided they have an approved Letter
of Agreement between the combat and materiel developer - and will be
fielded by 1985. Further, all interfaces with Army systems in
echelons above corps and with joint, allied and NATO systems will be
included. Growth is provided by incrementing the fielding date by one
year with each iteration.

The analysis of each system relies heavily on data provided by the
proponent. This data describes the system in general, the interfaces
with other systems, by type, echelon and area, the interfaces by
functional application, and the information exchanged. Each of these
will be described using notional examples to illusirate the complexity
of the problem.

First, the system description gives a statement of the mission and
fielding date. This places the system in perspective on the
battlefield and in time. Then the system is described in terms of,
essentially, the physical characteristics of the interfaces.

Systems interfaces, as shown in the Figure 1, tell who will
exchange data and how. For example, "A" and "E" exchange data via a
remote terminal located at "E"; "C" and "D" exchange data via an
automated link. "B" and "D" might exchange data - not directly, but
through another system. "A" could be an executive system - receiving,
storing, and distributing data from a number of smaller, subordinate
systems. Note that subordinates can and do exchange data directly.
More than one executive could be in the network - this is illustrated
by making both "A" and "D" executive systems. A prime example of this
might be to make "A" a division command system and "D" a division
artillery system.

Interfaces classified by echelon of employment show who owns and
operates the system, as illustrated in Figure 2. Comparing figures 1
and 2, note how the five systems have grown to seven as two of the
systems - "A" and "C" - are employed at different echelons. Note also

the modification of interface requirements as illustrated by systems
“B", "C" and "D". Systems "C" and "D" interface directly only if they
are both employed at division level -~ and "B" and “C" interface
directly only between battalion and brigade levels. It can also be
seen that the division level system "A" must interface with its
counterpart at corps.

Interfaces classified by geographical area of employment
show the communications requirements o support the interface, as
shown in Figure 3. The prime example to note here are systems "A" and
"g" which are corps systems by echelon, as shown in Figure 2, but
system "E" is employed well forward +in a battalion area.

Interfaces are next described by their functional application.
Functional applications show the type of data exchanged in terms of
basic military information needs such as enemy situation, friendly
situation and supplies on hand. Figure 4 (above the dash line) shows
two systems exchanging information about enemy forces. For example,
command system "A" sends data on enemy forces to up-date the target
list in artillery system "B". After the target has been attacked,
system "B" sends the results back to "A" to update the enemy
situation. Many systems are multi-functional as chown by the entire
Figure 4. In this case, artillery system "B" also provides command
system "A" with ammo useage data to update both the friendly situation
and the ammo supply picture.

The last thing Tooked at is what information is exchanged
in relation to the functional application, as shown on in Figure 5.
In this case, the functional application exchange is broken down into
specific data elements. The data sent (denoted by "S") or received
(denoted by "R"), depends upon what the system has available or
requires. For example, command system "A" designates a target to
artillery system "B" by providing data elements describing the subject
(such as "fire mission"), the unit size (such as "company of
infantry”), the activity of that unit (such as "moving in the open"},
the date and time they were seen, and the location. "B" would return
the results of the engagement by reporting appropriate data elements,
to include updating any changed data for the enemy situation.

Now that we have seen what information we have to work with,
the analysis process will be described. Each system is looked at in
terms of the approved systems requirements and information shortfalls,
as discussed in the BAMP paper, to see if the system fulfills corps
autogation objectives. During this analysis, certain questions are
posed:

- What are the minimum data exchanges necessary for effective
system operation?
Can system efficiency be augmented by data exchanges?
- What data must be exchanged to satisfy the commanders information
requirements?
Can the system provide the data?
~ Can the system absorb the data?

)

-15-

- rrrer————
O T—— -
"_!'-'-..l."-!'.-!!!!!!llllllllllllIlI---r——f

In the end, all Battlefield Automated Systems are compared to each
other and all matching inputs and outputs are documented. This
becomes the ABIC product, a document showing - in system by system
pairs - a graphic portrayal of all interfaces, a presentation of
information exchanged, and supporting rationale for each interface and
exchange. The ABIC is used as a requirements document for HQDA
approval of interfaces, as supporting info for the materiel
developer - and most importantly, to define the corps automation
architecture.

During the first iteration of the ABIC, many insights into the
paths and pitfalls facing an Army automation architecture were
gleaned. These fall into the broad categories of fielding dates,
executive systems, software, data base management, standardization, and
continuity of operations.

Fielding dates impact in two ways. First, when many systems are
fielded at the same time, and second, when systems in a network are
fielded at different times. When many systems hit the field at the
same time, there is a massive increase in data exchanges.
Communications and processors in a network must be able to handle this
increase - without an unacceptable degradation of performance. To
minimize the problem, systems must be well designed and data base
management techniques must be up to speed before-hand. Major changes
to software after the fact are too expensive to be a viable solution.
Differing fielding dates cause other prcblems as there may be
significant gaps in a network. Cost and operational need must be
compared to decide if interim Tinks must be created of if certain
Tinks can be delayed. This must be done before fielding as it is
cheaper to design interim links into a network than make fixes
afterwards. Another aspect of this is continuity of operations -
alternate plans must be made now to back-up a network or system if the
designated back-up system is not yet fielded.

Executive systems are the best example of the massive increase in
information exchanges within a network upon fielding. Again, data
base management techniques must be well in hand to ensure the
executive systems can handle their mission. Due to their size and
complexity, the information to be used must be pinned down early to
avoid expensive fixes. On the other hand, due to the key role of the
executive systems, it is best to concentrate upon them as it will be
much cheaper to change a few executives than a lot of subordinates.

Software must be well-designed and tested from the start - the
cost of changes is expensive in both time and money. It must also be
designed for ease of maintenance after fielding. Software is really
no different than a tank - if it breaks down, it must be gquickly fixed
to restore operational readiness. The ability to do this,
particularily in terms of people and money - is already one of the
biggest questions in the automation architecture scheme.

Standardization of hardware, software, data elements and
procedures - just to name a few aspects - is the key to an automation
architecture although not the total solution. However,

-16-

standardization for its own sake is not the answer - the future must
be planned for to avoid the prohibitive cost of changing horses in
mid-stream,

Data base management techniques are of prime importance due to the
volume of data involved. The dual capability of automatic and on-line
file maintenance must be built-in to prevent the volume of information
from degrading the system. A viable network management and control
scheme and the decision to use centralized or decentralized data bases
must ?e balanced by the CONOPS requirement to reconstruct data bases
quickly.

Continuity of operations is the most critical aspect of an
automation architecture. As the Army becomes more automated, the less
it can revert to manual operations for back-up. Types and methods of
back-up must be jdentified and integrated into planning and
development from the start. In a combat operation, the ability to
restore a command and control system to operation quickly may spell
the difference between victory and defeat. Additionally, it must also
be known if a system can back-up another without degrading the
performance of either or both - and whether or not subordinate systems
can function without the executive.

As CONOPS is the ultimate tie-in of all other topics, one thing
must be made clear. These wartime systems are being designed and
tested in peacetime. It may not be possible to completely simulate
the intensive demands combat will place on a system or network - but
there may not be time to do a better job later.

It is unfortunate that development times, defense considerations
and the need to employ certain systems as soon as possible hinder a
logical fielding plan. The ABIC is an attempt to pin down interface
requirements and provide a comprehensive automation architecture for
coordinated development. Upon its success rides the future of Army
automation.

———— »

‘2 94nby 4

egw 4
TN
UMWY - - — o
@ - | __ V WALSAS
¥ s \
N P n
7 viaiss € ‘
\ {
\\ s
\\ oo.a \ _
Ve .o | w
7 I.L | _
J WALSAS
’ 3 W3ISAS
11 y - -
NDTR03 AL VREINI

JIdV

——

T T —
§ aanoyy
@e:m_u.:.) SIS
LN - (FTNY
\
v _\ A
4 WALSAS /¢
<EB>m.m/
e /
L =2 vilss
\\\\\\ TV
JWSAS |- 7 VaISAS
11 X XX 0K
Y3V WOIHIWEI039 Ad VARHINI

JIdV

—

SOYREINT SOLYII Y

IJ1dV

*G 94nbyL4

WD =Y QB =S

¥S NOLLYDO0 ¥
S DENT 4

¥S | 910 uS

S ALIALLY ¥

¥ TIS S .

y 133dns S ¥

INBETE NOLLARONI
W NOLLYDT oY X NOLLYOI v
g WaLSAS V WALSAS
FNVHOXE NOLLARIN

Jidv

HUMAN FACTORS

Jean N. Hooper
ART

HUMAN FACTORS

SESSION CHAIRPERSON: Jean N. Hooper

Army Research Institute

SESSION SUMMARY

The Human Factors Session at the Army Software Symposium was
focused on two areas where human performance is critical to system
operation--the roles of the human as system developer and as system user.

General issues in the design of computer systems to facilitate
human-machine interaction were addressed. Clearly, there is a need for
cooperation between system developers and human factors specialists to
develop interface guidelines that transcend specific systems.

Use of interactive query language systems by naive users to store,
manipulate, and retrieve information is becoming more widespread in the
Army. Human factors issues in the design and use of query languages were
discussed.

Software development is widely recognized as a costly, often
error-prone activity which contributes to system unreliability. Recent
research on the performance of the individual software developer have been
reviewed with the goal of improving the efficiency and accuracy of the
programming process.

erT——

e

Human Performance in Software Development

Jean N. Hooper

Army Research Institute

Software development is well recognized as a costly, labor-
intensive activity. Improvements in the software development process
must focus on the performance of the individual programmer in writing
code; unfortunately, it is 6nly recently that the individual's perfor-
mance has been examined. Different metrics of verformance (e.g., lines
of code, errors, product quality) were discussed, and research on
programmer performance will be summarized. Concluding remarks addressed
possible means of improving the performance of the individual software

developer.

| est——

A REVIEW OF FACTORS WHICH INFLUENCE
SOFTWARE DEVELOPMENT PERFORMANCE

Jean N. Hooper
US Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Software production is widely recognized as a costly, error-prone,
labor-intensive activity. Many factors which influence the performance
of the professional software developer have been identified through
controlled research and project audits. Literature in this area will be
reviewed to identify factors affecting software development performance,
especially productivity. This analysis will be used to generate pre-
scriptive suggestions useful to project management personnel in optimizing
performance.

Some of the factors which have been found to influence the performance
of the software developer are shown in Table 1. These factors can be
grouped into five categories:

a. Project factors, such as program type and complexity;

b. Environment factors, such as turaround time;

c. Programming tools and methods;

d. Management factors, such as programmer team organization; and

e. Personnel factors, such as experience.

This list is not intended to be exhaustive; clearly, just in the area of
personnel factors, there are many more such as motivation and skill

level.

Project Factors

The effects of project factors on performance are summarized in
Table 2. Both Brooks (74) and Zelkowitz (78) cite similar figures of
productivity, measured in lines of code (LOC) per year, for software
projects of different types. The most difficult type of software is a
control program, with productivity rates of about 600 LOC per year. For
systems programs, the productivity rate goes up to around 2,000 lines of
code per year, an increase by a factor of three. Applications programs
are generally written at a rate of 6,000 lines of code per year, roughly
a ten-fold increase in productivity over control programs.

Brooks (74) has also offered information on the effect of project
complexity on project cost. Note that he uses cost, and not some other
metric of performance as his measure, but in the context of his report

- e v mmmm b el ek s b e s

e

T —— "*”‘“““""HHnnu-u-an!nu-!!Em!l!l!!!llIII---———
——— . " _

cost .an be roughly equated with productivity. He has determined four
different levels of complexity, with level 1 the simplest and level 4
the most complex. A level 1 program, at the simplest level, 1is produced
for the author's own use; Brooks assigns this a cost factor of one. The
next level of complexity is a programming system, which is a generalized
and documented program, and is three times more costly to produce than
an "own use' program. A programming product, at the third level of
complexity, is one which requires integration of components, costing six
times more than a level 1 program. At the highest level of complexity
is the programming systems product which requires everything--it must be
generalized, documented and integrated, and costs nine times as much to
produce as a level 1 program. Thus, according to Brooks (74), complexity
of the program can produce a nine-fold increase in cost.

Project size is another factor which influences productivity.
Johnson (77) audited sixteen software projects and concluded that over
three times more debugged, implemented, and documented source code was
produced per year on small projects. Unfortunately, he neglected to
define "small" and "large" projects, thus providing little quantitative
information on project size,

In addition to the factors of program type, complexity and size,
the required interaction among system components also influences productivity.
Brooks (74) notes that projects with high interaction requirements have
lower productivity rates.

Environment Factors

The computing environment is another area which may influence the
performance of professional programmers (see Table 3). Sackman et al.
(68) studied the performance of professional programmers using time-
sharing and "simulated batch" systems. The simulated batch system had
a fixed turnaround time of two hours. No significant differences were
found between the timesharing and simulated batch conditions on any of
the performance measures. This can be attributed to the large individual
differences in performance which were observed; the individual differences
erceeded differences due to the programming environmeut. The authors
then transformed the scores to reduce the variance and use! programmer
coding skill as a covariate; in this analysis, a significant difference
was found in debugging time, with lower debugging time for programmers
using the timesharing system.

Turnaround time, and not the use of patch vs. timesharing, may be
the factor which influences performance. This is supported by the
failure of Sackman et al., (68) to find significant differences on most
of the performance metrics employed despite statistical reduction of
individual differences. In the Sackman et al. research, the turnaround
time for the '"simulated batch" system was very short, and was not variable.
Rarely are such conditions found in a batch system, Oliver (78) has
noted that turnaround time is a factor influencing performance; installa-
tions with short turnaround times have higher productivity rates.

26—

Management Factors

Management factors which influence performance are summarized in
Table 4. The organization of programmer groups is a factor studied
extensively by Scott (73) and Scott and Simmons (75). These researchers
developed a communications model of team organization based on the
analogy of a programming team to a multiprocessor communications network,
with a single instruction multiple data stream (SIMD) organization.
Inputs to the model consist of an activity profile and productivity
level for each member of the programming group. The activity profile is
the percentage of time the programmer spends in productive, personal,
and communications activities; these figures are based on empirical data
(see Scott, 1973 or Scott and Simmons, 1975, for additional information).
A scaled productivity value was the output of the simulation using this
model.

Scott (73) and Scott and Simmons (75) simulated the productivity of
three different programming group structures, shown in Figure 1. From
left to right, these will be referred to as the subteam, traditional,
and egoless structures (Weinberg, 1971). With identifical activity
profile and productivity inputs for each of the three structures, the
egoless and substeam structure groups were significantly more productive
than the traditional team structure. No significant differences in
productivity were found between the subteam and egoless structures.
Scott (73) attributed the lower team productivity of the traditional
organization to an infermation bottleneck caused by the position of the
manager of the team. In the other two organization structures, the
information flow was distributed across team members.

Using the same model, Scott (73) investigated the effect of team
size on the productivity of the traditional group structure. Starting
with a three member group, performance of the team was simulated, and
team members were added in increments of three up to a total group size
of eighteen. The simulation confirmed that there is a point beyond
which the addition of personnel provides no increase in group productivity.
The productivity increased with the addition of personnel up to a group
size of twelve; beyond that point, there were no significant gains in
productivity with increased group size. This findings may be related to
Brooks' Law (74): adding more personnel to a late software project
makes it later, due to the communication and training requirements
placed on the personnel already assigned to the project. In Scott's
simulation, it is likely that the information bottleneck observed in the
traditional team organization reached a critical level with a group size
larger than twelve. Unfortunately, Scott did not investigate the effect
of group size on the other two organization structures.

In a third simulation study employing the communications model and
the traditional team structure, Scott (73) investigated the effect of a
highly productive individual on group productivity. Productivity of the
group was higher when the productive individual was a group member than
when such a person was placed in the role of group chief. Once again,
this is attributed to the communication requirements imposed on

~27-

the team chief which reduce productive time, especially in the case of
the traditional team structure used in this simulation.

Weinberg and Schulman (74) performed two experiments to investigate
the effect of explicit project goals on performance. In the first
experiment, two groups of professional programmers were assigned identical
programming problems. One group was given the goal of maximizing efficiency
of the program, while the other group was given the goal of minimizing
development time to completion of the program. Performance on the task
was measured as the number of runs to completion of the program and
execution efficiency. Weinberg and Schulman found that the objective
was achieved at the expense of the other measure. The group with the
efficiency goal minimized execution time but required a greater number
of runs, while the fast development group produced the program more .
quickly but execution time was much longer.

In their second experiment, Weinberg and Schulman (74) studied the
performance of six three-member groups. Each group was assigned a
primary goal of minimum core used, minimum execution time, output readability,
program readability, minimum statements, or minimum programming hours;
each group chose a secondary goal from the same list of six goals. Per-
formance was measured directly for all attributes except readability,
which was judged by ranking of solutions by experts.

Weinberg and Schulman (74) report a clear influence of the primary
goals on performance. Some goals were found to be incompatible, such as
execution efficiency and program readability; in particular, core and
execution optimization goals were found to conflict highly with other
goals. Programming groups maximized performance on the primary goal
attribute when faced with incompatible multiple goals. Note that
programmers can make tradeoff decisions when given explicity ranked
goals.

Programming Tools and Methods

The tools and methods used on a software development project alsc
clearly affect performance. A summary of these factors is shown in
Table 5. Both Brooks (74) and Oliver (78) compared the effect of language
level on productivity, finding that productivity, measured as lines of
code produced per man month, remained constant regardless of language
level. From a psychological point of view, this is reasonable if each
line of code or instruction is considred a conceptual unit or chunk.
Despite the fact that line-by~line productivity is relatively constant,
Brooks estimates that effective productivity increases by 5 times when
higher level languages such as FORTRAN are used instead of assembler
language. This is because fewer lines of code are required in a higher
level language to accomplish the same process.

The use of modern programming practices such as structured programming
techniques also has been found to dramatically increase productivity.
Based on project audits at IBM, Baker (75) estimates that full implementation

-28-

of structured programming techniques can yjield a 50% increase in
productivity, measured in bytes of code produced per man month. Full
implementation of structured techniques includes use of the Development
Support Librarian, Top-Down Development, Structured Coding, and Chief
Programmer Teams. In two comparable aerospace projects on which the
experience level of the personnel was equivalent, the use of the Develop-
ment Support Librarian alone increased overall productivity by 507%.

Baker (75) also compared productivity rates of two other aerospace
projects. On one, the Development Support Librarian was the only technique
used; on the other, the Development Support Librarian, Top-Down Design
and Structured Coding were all employed. The personnel on the second
project produced roughly twice as many bytes of code per man month.

While clearly IBM's experience with structured programming techniques
has yielded impressive productivity gains, it may not be this specific
set of techniques that is responsible. It may be that any structuring
and formalizing of the methods and approach to software development
would yield significant improvements in productivity.

Programmer Factors

Programmer experience, especially experience in the specific applica-
tion area, is another factor which has been found to increase productivity
(Scott and Simmons, 1974)., A particularly interesting result was found
by Youngs (74), who investigated the effect of programmer experience on
error frequency. Novice programmers were compared with "professionals,"”
defined by Youngs as persons who had earned money programming. It is
certainly reasonable to assume that the level of expertise of the "professionals"
differed considerably.

Youngs' (74) results are especially interesting because they are
somewhat counterintuitive; professional programmers committed more
logical errors than novices. Logical errors were defined as errors in
the algorithm to solve the problem which produced incorrect program
output. Youngs also found, as might be expected, that professional
programmers made fewer total errors and required fewer runs to achieve a
correct program.

Multifactor Research

Scott (73), in addition to his simulation research on programming
group organization, used multiple regression techniques to determine
influences on project-level productivity., Two large software development
data bases, from SDC and PRC, were used. Total lines of object code
produced over the total man months of the project was the dependent
variable; the order in which the eight most significant independent
variables were entered into the equation is shown in Table 6. This
order represents the proportion of variance of the dependent variable,
productivity, which was accounted for by the independent variable. Thus,

-29-

—

the most significant factor was frequency of operation of program, which
is related to Brooks' levels of complexity. The plus and minus symbols
to the right of the independent variables indicate their relationship to
the dependent variable. A "+ +" indicates that an increase in level of
the independent variable causes an increase in level of the dependent
variable, productivity. In general, this list of factors influencing
performance is consistent with the factors summarized above.

Additional confirmation of the influence of these factors is found
in another research study by Scott and Simmons (74), who used the Delphi
technique to achieve expert consensus on factors influencing project-
level productivity. After two rounds, subjective agreement was achieved
on factors influencing implemented object instructions per man month.

On a fifteen point scale, from -7 to +7, the factors with the highest
median ratings, indicating greatest positive effect on productivity, are

* shown in Table 7. These factors are much the same as those already
2ddressed, with the exception of the addition of task allocation factors.
Urfortunately, variables having a highly negative effect on productivity
were not reported.

Implications and Conclusions

The factors identified which influence performance were summarized
in Table 1. Clearly, some of the factors, especially project and
environment factors, are beyond the control of project management.
However, prescriptive conclusions may be generated from an examination
of factors that may be manipulated at the management level. These
conclusions and recommedations are shown in Table 8.

First, always choose the highest level language that will satisfy
the requirements of the problem. The use of a high level language not
only increases productivity, but enhances product maintainability and
transferability.

In selecting a programming group organization, communication bottle-
necks should be minimized by using some structure other than the traditional
team organization. The subteam structure used by Scott avoids communica-~-
tion bottlenecks and also seems to minimize the communication requirements

1 placed on each team member. Also, to maximize group productivity, a
; highly productive individual should be assigned as team member, not team
' leader.

Individual task assignments should minimize the routine interaction
and communication between team members. When possible, task assignments
should consist of functionally independent modules. In addition, of
course, task assignments s'ould be explicitly documented and communicated
to the individual.

At the project management level, the explicit statement of goals
and ranking of priorities will maximize performance on the primary goal
and allow for reasonable product performance tradeoffs to be made.

Well-defined practices such as structured programming techniques should
be implemented to improve productivity. Furthermore, the project manager
should avoid the impulse to overload a project with personnel. Brooks
Law (74) still holds: 1in addition to reaching a point of diminishing
returns with an increase in personnel, productivity on a late project

ma3y be impaired. Finally, design and code walkthroughs should be
implemented in a non-threatening manner, without representatives from
management, in order to detect logical and other errors which may elude
the individual programmer.

-31-

References

Baker, F.T. Structured programming in a production programming environment.
In Proceedings, International Conference on Reliable Software. SIGPLAN
Notices, 1975, 10 (6), 172-185.

Brooks, F.P., Jr. The mythical man-month. Datamation, 1974, 20 (12),
44-52,

Johnson, J.R. A working measure of productivity. Datamation, 1977,
23 (2), 106-112.

Oliver, P. Examining programming costs. Computer Decisions, 1978, 10 (4},
50-52.

Sackman, H., Erikson, W.J. and Grant, E.E. Exploratory experimental
studies comparing on~line and off-line programming performance.
Communications of the ACM, 1968, 11, 3-11.

Scott, R.F. A computer programmer productivity prediction model.
Unpublished doctoral dissertation, Texas A&M University, College
Station, TX, 1973,

Scott, R.F. and Simmons, D.B. Programmer productivity and the Delphi
technique. Datamation, 1974, 20 (5), 71-73.

Scott, R.F. and Simmons, D.B. Predicting programming group productivitv--
a communications model. JEEE Transactions on Software Engineering,
1975, SE-1, 411-413.

Weinberg, G.M. The Psychology of Computer Programming. New York: Van
Nostrand Reinhold Company, 1971.

Weinberg, G.M., and Schulman, E.L. Goals and performance in computer
programming. Human Factors, 1974, 16, 70-77.

Youngs, E.A. Human errors in programming. International Jourmal of
Man-Machine Studies, 1974, 6, 361-376.

Zelkowitz, M.V. Perspectives on software engineering. ACM Computing
Surveys, 1978, 10, 197-216.

~32-

V3dy NOILVIITdddy NI 3IIN31H34X]

ONISSII0¥] VLV NI IONIIYIdXJ
TINNOSYE3d
LNIWNOISSY ASV|
ALIVNY NOILVIN3WND0(
NOTLVYDINNWWO) d3¥1nd3Y
SdNOYY/SWYI| 40 NOILYZINVON()

Q3INOISSY TT3INNOSHId dIFWNN
SIAILI3rd() 40 LINIWILVLIS

- SY010Vd INIW3IOVNVN

SIILITIL[) ANV ST00]

JOVNONVY)

SAQYVANVLS/SIITLIVY] ONIWWYHOOU

STOHIIW ONV ST001

d

T 314vl

IWI| ANNOYYNYN|
HOLVG SA ONI¥VHSIWI|

INIWNOETANT

SNOILONYLISN] (/] LN3D¥3Y
IN3IWd0T3A3([¥04 IWI| G3ISdV1]

W3ILSAS N3I3IML3J NOILOVYILN]

NOILVY3d(40 AININDIYY

E| E|

SLNINOdWO)

-33-

3Z1§ 103royd

ALIX31dWO) WYH90dd

3dA| WY490Y4

SY0IJVS IJ3rodd

«KL31yar3ionpoad
$35npal UOTIOBIIIUT JOo I3adap yBIl-

s323foad a8iel uo ueyl Ixow X¢
23foxd TTEWS UO 3IB: AITAFIONpOIg-

6 = 3onpoad weisds BujuweiBoig
9 = 3onpoad Buruweadoig
€ = waisfs BuyummeiBoiay
1 = 1031de3 3s0> wmeiBoig-

1013uU0d 13A0 wei18oid
uoy3ed211dde 103 288B31IDUT PTOF-H~
wei80ad T1013u0d> 13a0 weaBoid woIsLs
103 KL3FAFIONpPOId UF I8VIIOUT PIOF-(~

1e3£/001 0009 3¢ swei8o1d uoy3wd>YTddy
awak /201 0007 3¢ sweiBoid waisdg
1va4/2071 009 3I® U233}am smeaBoad 1o13u0)-

J0UPEi0jiag O3 31030¥] jo djysuoiIe|dy

134 /5U0TIdNLISUY
328fqo pajuswayduy A1euung
xealk
/3P0d 321n0s jo sauyy
pajusundop ‘paddngap s1Fpny 312afoag
£37aT30npoad
A 303283 380D Axeumng
l1eak /s5U0OTIONIISUT
309(qo pajuawatduy Aiewung
1e34/901 Lieummg
21INGEI) 9OUPWIOJIDg {oieasay jo 8dkL

si103oed 3d09foag

7 3718V1

(v2) sA001g

(LL) uwosuyor

(vL) soo1g

(7¢) syooag

(8L) zIymoNTaZ

I9qoaeasay

sjuauodwod waIsls
Buowe uoy3idea83ul

2218 13123foag

(3xa3 298)
3onpoad woisds BuypwmeiBoad
3onpoad BuymseaBoad
wa3sks BuymueaBoad
wexBoad
:£11%31dwo> weaBoad

ad4y weiloag

uopyedydde
wa3sks
TO0a3U0D

:adky meaBoag

303084

Y T T ¥ T W

e

—34-

sasealduy
huu>auu:vcun oW}l punoleuin) 13ISeI YIIM-

103283 43 ST 3wyl punoleuiny 31s238ng-
1IN0 patieAaod
TT¥4s Burpod pue pawiojsuer;
§31028 uaym Burieysawyl yiym
aurl 3nqap 1amoy ATIuedTIFusyg-
smy3 Bulpod T1:97 ‘awyl InqIp T:gz
{S30UAIIIITP TENPFATpPUL 981eq-

3oUPmIojiad 03 1010€] jo dTYsuoTIvTay

(paurjapun)
£31AaT3IoNpoad

(suor3dniIsuy auyyoew)
3zys wea3oad
awyl uofINIIX
sinoy 3uypod
sanoy 8Buid3nqap
awf3 4o

JINSEIR adueulojaad

UOTIBALI3SQQ (8L) 13AITO

(89) 3uein

pue uos)yoyag

juauwtiadxy payroxjuoy ‘uewides
Yyd21easay jo adi] EETEEEETEY

$103084 JUBUMOITAUZ

€ ATdvVL

2WI3l punoaeuiny

yosieq "Sa
Sutaeysawy}
I030e]

-35-

(3x3) 39s)

+31qliedwodutl syeod aydiirnu awog-
dduewlrojiad uo sieod

L1epuodas pue Liewjid jo aduanyjuy i1wa[d-
108 Aiewyad uo

dduewiojiad pazjuyxew sdnoas FujwweiBoig-

*UOT133111D Te08 uo pazIwlxew
sem aduemiojiad ‘yeod 3ITOITd¥d YIym-

+S13quaw IATIM] 3O 3z]s weal e syead
K31a130npoad dnoad ‘wea3 teuojiIjpell uj-

*JITYD weay 3%
pacnpal TenplAfputl aarionpoad A1ysdyy
jJo Teriuaiod ‘weal TeuolIjpeas uj-

+TRUOTIFPERII uey3l
A31ap3onpoad dnoa8 1ay3yy Ar3uedyjzjulys
peY S$3IN3ON1I6 WEIIQNS pue ssajoBy-

35UBWI0jiag 03 1030E] jo diysuojIrelay

£31171qepeas ueadoad
A3y11qEepE21 3Inding
sjudwalels weidoad jo g
sanoy BurwweaBoiag

pasn aio)

2wyl uoyrindaxd

uor3Iafducy 03 suni g
W3 uoFIndaxa weiloag

Yyiuow/3apod
3103[qo pajuswetdut
JO S3aUIT 03 pareds

Yjuou/apod
3123(qo pajusuwayduy
JO Saujyl 031 pareds§

Yauouw/apo2
3123fqo pajuawayduy
JO saujly o) pateds

3insea) souewiojiad

(9¢) uewinysg s1eod

juawyaadxy pagyoajuo) pue 31aquiam 123foad payuey

(7¢) vewrayag

juawiiadxy payjrolijuo) pue Siaquiapm

s1eo0n 123foxd

uorleTNUIg/UTTIPOH (£L) 33008 ?Z7§ wead]

TEeNpIATPUT 3ayidnpoad

uoryernuis/3urTapoy L1481y 3o 310N

(€¢) 33008

(1 814 23s)
weajqns
ssa108

Teuoyaypery

uofivzZIUElio

uotlernuwis/3urT2pon (gL) 33008 weal Buymweadoad

Yo1easay 3O ¥dAL A3YdIeasay 103084

sio3jdoegd juauwadeury

Y A19V1L

-36-

FIGURE 1

NS

SUBTEAM TRADITIONAL EGOLESS

EXPERIMENTAL TEAM STRUCTURES Usep BY ScoTT (73) AND SCOTT
AND SiMMons (75)

(0S) Sujpo) paanioniig-
sanbyuyday Sujuuweildoid

(aqyl) uBysag umog dol-
p2an3onils jo uoljejuswaduwy [INJ Yira
A37Aa73onpoad uy aseaiaduy y0¢ pajewrlIsy- ('1sq) uerieaqyl
2001 £q L37ar3ionpoad paseasdug 310ddng juamdoyanag-
auoT® 1SQ *sa JS Pue g4l ‘71Sd 3o 2@sn-

205 4£q L3ray3jonpoad

ssanbyuyoay
pasea1duT 87003 ou °*sA SO IO 3ISN- Yyluom ucu/saliq s3Ipny 3I03jfoigd (SL) 1ajeg Buimmei8oxd painioniag
*a3enduey
JO $63TPIBI3I JUBISUOD AITATIONPOAF- (poufjapun) £3jarjonpoad UOT3IRAIISGQ (8L) 9arT0 13aa] a3ensue]
|
«©
. 1/14 7
a8en8ue] a2uyydew 12A0 XG NVIL30d
3o saseaiduy L317AFIonpoad 3A1303933d 10800
sp1914£ a8enBueT T12a37-y37Yy jo asp- 13TquUassy
‘1249 yjuow uew/apod
a8en3uey jo ssaypaedaa juelsuod HOI- pa88nqap saurl L1euung (yL) sxooag

:19Ad7 28enBue]

dJUeWIOJiagd 03 10I0€] JO dFUSUOTIE[aY

81nse’d)] aouewlIoJiag YoIeasay 3jo adly I3Yo1easay 10308]

SpOYy3Ia[pue STOOL

S 19Vl

TABLE 6

Order of Independent Variables Entered into Regression Equation

Frequency of operation of program
Programmers assigned

Elapsed time required for development
Use of low level language

Analysts assigned

% of 1/0 instructions

Average programmer experience
Complexity of application

Response time required of program
(from batch to real-time)

Adapted from Scott and Simmons (75)

TABLE 7

Factors with Greatest Influence on Productivity

MEDIAN

Quality of external documentation (prior to RATING
task assignment) (6)

Programming language (5)

Availability of programming tools (5)
(e.g., utilities, traces & dumps)

Programmer experience in data processing (5)
Programmer experience in functional area (5)

Effectiveness of project communications (5)
(completeness of task assignment)

7. Independent modules for task assignment (4)

8. Use of well-defined programming practices (4)

Adapted from Scott and Simmons (74)

TABLE 8

Conclusions

Language
- use highest level possible
Team Structure
- use subteam or egoless structure

- assign highly productive individual as team member,
not chief.

Task Assignments

~ Divide tasks to minimize intercommunication

~ assign functionally independent modules

- explicitly document and communicate assignment
Management

- explicitly state goals and rank priorities

avoid overloading project with personnel

implement design and code walkthroughs

use well-defined practices and methods

Human Factors in Query Language

Lawrence M. Potash

Army Research Institute

Development of interactive query language systems that approach
use of natural language in flexibility and power and employment of such
systems by the Army makes a review of human factors considerations in de-~
velopment of these systems highly desirable. Human Factors considerations
in development of query language systems were discussed under the topics:

a. Query language
b. Symbols or vocabulary used in query language

C. Supportive, pacing and general features of man/computer
dialogue

d. Types of users employing the system.

Some human factors research undertaken at USARI relevant to these topics
had also been briefly discussed.

HUMAN FACTORS IN QUERY LANGUAGE
Lawrence M. Potash

U.S. Army Research Institute for the
Behavioral and Social Sciences
Alexandria, Virginia

The development of interactive query language systems that approach
use of natural languages in flexibility and power and the employment of
such systems by the Army (for example GIMII used in ASSIST) make a review
of relevant literature desirable.

This paper is concerned with query "languages'" that have syntax that
is more than an elementary "fill in the blank" or picking out appropriate
terms from a hierarchical list. Examples of query statements in such
"syntactical” languages are shown below:

SQUARE: EMP ("50")
FORMAL NAME DEPTNO
LANGUAGES
GIMII: FROM EMP WITH DEPTNO EQ ''50" LIST NAME #
NATURAL
LANGUAGE ENGLISH: Find the names of employees in Department # 50,

A guery language system is more than just the basic query language.
Adequate description must also include supportive features ("help" ,
clarification Dialogue, error feedback, etc.), pacing devices, (confirm-
atory signals, attention signals, etc.), and the user population for which
the system is intended.

This literature review synthesizes experiments, theoretical and des-
criptive literature relating to query language. Relevant literature is
summarized in terms of a) syntax, b) symbols or terms used in query lan-
guage, c) supportive, pacing, and general features of the man-computer
dialogue, d) types of users employing the system. The literature review
on which this paper is based is nearing completion and is quite long.
Rather than trying to condense the entire review into the written equi-
valent of a 20 minute presentation, I am listing some of the more major
conclusions and suggested areas for future research in terms of the four
dimensions previously described. Before listing these conclusions, one
generally applicable, perhaps somewhat disappointing, cautionary note
is that MOST CONCLUSIONS OR ASSERTIONS THAT ARE FOUND IN THE LITERATURE
ARE THE RESULT OF USER EXPERIENCE AND/OR "REASONABLE' OR LOGICAL EXTEN-
SION OF SUCH EXPERIENCE.

I

Currently, a large body of research literature which could serve to pro-
vide Human Factors guidelines for query language development DOES NOT
EXIST. The remainder of the paper cites some of the more important
conclusions derived from the literature survey.

QUERY LANGUAGE SYNTAX

A Some_ Conclusions

o Advantages of natural language syntax ("english") are limited
training requirements and flexibility. Disadvantages of natural lan-
guage are imprecision and difficulty of implementation.

o Disadvantages of using natural language are diminished when the
domain of subject matter is highly constrained.

o System '"comprehension" of query language ranges through key
word recognition systems such as ELIZA (which can be made to give the
appearance of english comprehension) through formal query languages
(as per example), which are relatively limited in range of procedures,
syntax, "meaning", and their domain of competence, to truly generative
comprehension in which the system can analyze a natural language input
using internal knowledge of the subject domain and reasoning capability
to generate its own questions, problems or solutions. Only a few
generative systems exist and all have a very restricted domain of com-
petence.

o In future systems using voice input for natural language, the
users should be given incentives for being precise and concise.

o Use of logical and arithmatic operators may result in high
error rates (indicated in some but not all research literature).

Some Suggestions For Future Work

o Cost benefits analysis including experimentation to delineate
conditions for advantageous use of natural language.

o Investigate use of logical and arithmatic operators embedded
in different query languages and employed by different user populations.

o Comparison between different approaches to formal query lan-
guage such as QUERY BY EXAMPLE, SEQUEL, SQUARE, GIMII under variety of
conditions and user parameters.

o Assessment of an interesting alternative to truly generative
systems, use of systems that employ task related information to aid
the user.

43~

SYMBOLS OR TERMS USED IN QUERY LANGUAGE

Some Conclusions

o Controlled vocabulary can facilitate searches once vocabulary
has been learmed.

o "Inverted glossary' with system displaying legal control terms
after user inputs terms can aleviate learning requirement of controlled
vocabulary,

o Usercodes should suggest what they represent (i.e., letters
making up acronyms rather than arbitrarily assigned letters or numbers,
etc.).

o Experimental work indicates that simple truncation is an effec-
tive abbreviation technique but much more research needs to be done.

o For natural language, a relatively small vocabulary is probably
satisfactory for most purposes when the subject matter handled by the
system is not too broad.

Some Suggestions For Future Work

o Research on category definition and selection of most effective
labels or retrieval terms.

o Maximizing abbreviations to best represent terms they stand for.

o Effects of restricted vocabulary on use of natural language in
realistic man-computer dialogue settings.

SUPPORTIVE, PACING, AND GENERAL FEATURES OF MAN COMPUTER DIALOGUE.

Some Conclusions

o Tolerance for delay in system response is related to perceived
difficulty of problem (10 sec for relatively small computations to 10
min for long problems).

o Tolerance of delay is enhanced by pacing devices, i.e. (con-
firmatory signals, attentional signals, cueing signals, status displays).

o Error -control program advantageous (entry preparation display,
editing facilities, variable spelling approximations, flexible error
description feedback, system error monitoring).

o Error messages should not

1) be humoureous or overly friendly (it "wears thin").

2) Use wording that implies fault on part of user.

~bb—

o Error messages should communicate
1) where error occured
2) what error is

3) ways to recover from error (or where to find relevant
information.

o CRT displays permit more rapid communication, are less noisy,
allow user errors to be corrected more easily than teletypewriters.

Some Suggestions For Future Work

o Work could be undertaken to determine how support require-~
ments differ for different types of query language such as natural ver-
sus the more popular types of formal language.

TYPES OF USERS EMPLOYING SYSTEM

Some Conclusions

o Distinction between dedicated operator, casual operator, and
intermediary operator.

o When casual users employed

1) system should not be difficult to learn or have many
new operations

2) feedback should tell user exactly what to do

3) system should not place short time limits on user's
response (pressure effect)

4) have terminal in private rather than public area
(fishbowl effect).

o When casual and dedicated users employ system it should be
flexible (i.e., layers of language, detailed error feedback for casual
user, abbreviated feedback for dedicated user, etc.).

o Where a keyboard is used by unskilled typist, function keys,
minimal character recognition, etc. may be helpful or intermediary
operator with typing skills could be employed.

o Users with programming background may use less English like
formal languages more accurately.

Some Suggestions For Future Work

o Field concerning interaction of system with user characteris-
tics relatively "wide open" for empirical study as contrasted with
induction from "previous experience" or deduction from "reasonable
assumptions".

—45-

Y Cr O VRV

Issues in Human/Computer Interaction

Raymond C. Sidorsky

Army Research Institute

Human Factors needs help from other disciplines if it is to
rise above ad hoc "solutions" as each man/computer interface is developed.
Other disciplines are in the same boat. Means must be devised to enable
interdisciplinary discourse within a context that is broader than the
specific system for which the team is assembled. Modes and mechanisms of
man/computer interaction that transcend specific systems must be identified
and characterized by interdisciplinary Working Groups. Macros, tasks
modularization, logical operators, retroactive error recovery and other
candidate topics have been discussed.

INTERDISCIPLINARY ISSUES IN THE DESIGN OF
EFFECTIVE HUMAN-COMPUTER INTERFACES

Raymond C. Sidorsky
Army Research Institute
5001 Eisenhower Avenue

Alexandria, VA 22333

The thrust of my remarks is to make a plea for greater interdisciplinary
interaction in the system design process. I shall also discuss a possible
mechanism for increasing such interaction within ISRAD.

The Human Factors community needs help from other disciplines if it
is to rise above ad hoc solutions as each man-computer interface is
developed. In almost every case human factors specialists are faced with
trving to make the best compromise within a very narrow range of options
left open to them. 1 realize that the design of any complex system
requires a large number of compromises and tradeoffs with respect to
such factors as physical layout, electronics, software, user requirements,
system architecture and so forth. However, the other disciplines can
alwavs hope that whatever the problems, the '"user" will be able to cope
with the situation and make the system work at a level which, if not
ideal, is at least sufficient to justify the development of the system.
When the system is fielded we in the human factors business usually find
ourselves trying to make the best of a bad situation. After we have
done our thing, we are often left with the feeling that although we have
helped alleviate the immediate problem, we have not developed a body of
knowledge that can guide us in developing future systems. Each system
turns out to be a special case. Slide #1 illustrates this situation.
Each of the three Human Factors experiments shown here was concerned
with a different kind of user problem encountered in the operation of
an automated tactical data processing system such as TOS, TACFIRE,
ASSIST, etc.

The first deals with the problem of the restricted vocabulary and
nomenclature involved in human-computer discourse, Nystrom and Gividen
at the ARI Ft Hood Field Unit observed that TOS users were consistently
misclassifying tactical data messages. A message classification coding
schema based on a letter-letter-number schema appeared to be the proximate
cause. An analysis of the structure and content of TOS messages followed
by empirical performance measurements led them to device a four letter
coding schema. The new schema significantly reduced the number of
misclassified messages and was more satisfying to the users.

The process of transforming raw information, e.g., spot reports,
into computer acceptable form is another recurrent problem in tactical
data system operations. Strub compared operator performance under
four conditions, viz., on-line versus off-line entry and verified (by a
second operator) versus non-verified message composition. Performance
measures of speed and accuracy indicated that the on-line verified
procedure was significantly superior to the other methods.

Finally, Fields, et al. evaluated four methods of inputting data.
Speed and accuracy of performance in using standard typing procedure was
compared with typing plus error correction, typing plus automatic completion
of entries and light pen selection of entries from CRT displayed "menus."
Menu selection proved to be the most effective.

Each of these studies is a good example of a well designed, carefully
controlled empirical evaluation of alternative configurations at the
human-computer interface. They provided valuable information to help
resolve critical problems in the design or operation of particular
svstems. But only under exceptional circumstances will it be feasible
to extrapolate these findings to future systems. The problems have been
presented to the human factors specialists in a way that makes the
development of general principle and/or guidelines extremely difficult
if not impossible.

My purpose is not to try to pass the buck or to deliver an apologia
for anv real or imagined failings of Human Factors. The low level of
user performance obtained with many systems is not the result of a
conspiracy to give human factors types a hard time. Instead it appears
to be the result of an inability of various team members to communicate
and interact with each other at a level that transcends the specific
requirements of the system for which the team has assembled. The basic
problem exists for all members of the design team, not just human factors.
All of the team members appears to view the situation as one in which
their freedom of action is unduly constrained by the inflexible, unalterable
requirements of other team members. But I think these seemingly unalterable
"requirements” may be more apparent than real. Their origins may lie in
the natural defensiveness of the members of each group striving to
minimize the complexity of their problem and/or in the erroneous assumption
that some desirable feature is well beyond the state-of~the-art of a
companion technology. That is, they don't ask for a new capability
because they assume it couldn't be delivered. Whatever the cause, in
manyv cases the result is a design decision based on too little information
about its effects and implications. Now everybody knows that 'better
communication" is needed in almost every sphere of human activity. So
what else is new?? 1 intend myv remarks to be more than a mere exhortation.
So I will try to describe some actions that could be taken by members of
ISRAD to help all of us to achieve more effective system design and
operation.

The method I propose is an adaptation of the Delphi Procedure that
has been used successfully for technological forecasting. 1 feel the
Delphi technique may provide a means for developing a mode of discourse
that will enable more constructive dialogue among system design team
members. Two kinds of Delphi-type working groups are needed. The first
stage Working Group (or Groups) would be tasked to define or identifv
system operations or processes for further analysis. To be useful, the
operations or procedures selected would have to be general enough to
transcend specific system constra.ats but at the same time not so general
or vague that they can only be discussed at a philosophical level.

~48-

e

Second stage Working Groups would then be set up to pursue the topics
defined by the first stage Working Group(s). The objective of these
second stage groups would be to try to determine--using iteration,
feedback, anonymity and other Delphi procedures-the practical limits

that can be achieved in utilizing or improving various processes or
procedures associated with information processing systems. An open,

frank discussion of the needs, limits and capabilities of each component
technology--in a non-threatening Delphi atmosphere--would go a long way
toward dispelling the many myths, fears and misconceptions that frequently
impede the system design process.

The following are some possible Working Group topics. These topics
are offered not with firm conviction as to their utility but merely as
illustrations of the approximate level of abstraction of the variables
to be analyzed. All have a human factors focus but are contingent upon
an integrated effort of all members of the system design team for their
resolution. I'd like to discuss each of these topics briefly.

DATA ENTRY MACROS.

The first item, Data Entry Macros, are to be distinguished from
Procedural Macros utilized by programmers. The term macro is used here
to refer to the sort of shorthand notation used to represent groups of
computer instructions that comprise a sequence of logically interrelated
operations upon some variables of interest to a system user. For example,
as shown in the next slide (Figure 3) a typical request from a commanding
officer to the G-2 staff might lead to a query statement requesting the
computer to:

"access the ENSIT file and print the time, location and direction
of movement of all enemy patrols observed in area XYZ."

Using macros, the operator need only enter:
M7, patrols, XYZ
that is, only three eutries versus 12 in the original statement.

Thus, the operator need only enter two or three items of information
to supplement the large number of entries made automatically by the
computer. This would inevitablv reduce input and logical errors, increase
the speed of data entry and retrieval and promote more effective communica-
tion between the system user (e.g., G-3, G-2) and the interface (keyboard)
operator.

Macros are potentially a great boon for the system user, especiallv
for the entry or retrieval of recurrent messages or queries. Indeed, the
macro approach may be the key to a conceptual breaktrhough in the barrier
between the user and the data base by allowing the user to tailor the
input/output process to the specific needs of the current situation.
However, much of the potential value of the macro approach will be lost

4

T e A R i i e -

if macros are not developed in a manner compatible with the behavioral
characteristics of the user population. Experience has shown that the
cognitive and mnemonic burden imposed on the TOC staff and the terminal
operators by poorly organized data base structures is very high. The
haphazard or casual use of macros will not prevent high error rates, low
productivity and user antagonism. The full benefit of data entry macros
will be obtained only when all members of the system design team are
aware of their properties, operation, advantages and limitations, etc.
The team members involved include those responsible for defining user
requirements as well as software, hardware, system architecture, human
factors and other technical specialists.

The implications of a number of the general aspects of macro design
and use must be carefully analyzed if the maximum benefits of macros are
to be realized. This includes consideration of such questions as:

Universal versus locally generated macros. A library of macros to
accomplish common, more-or-less universal entry and retrieval operations
must be defined and standardized. However, cautior is needed to insure
that over-standardization does not inhibit the ability of users to
devise individualized macros to suit their local circumstances. The
factors involved in the trade-offs between standardization and flexibility
require careful, coordinated analysis by all system design team members.

Macros within macros. As experience is gained with macros, it will
become apparent that basic macros can be aggregated to create higher
order macros. The development of higher order programming languages
(PL-1, Fortran, etc.) is perhaps an appropriate analogv. Since higher
order macros may provide the key to minimally constrained human-computer
interaction, care must be exercised to avoid premature standardization
on processes or procedures that will inhibit an optimum approach to
higher order macros.

Non-stationary population. One obvious fact of life facing us in
the development of macros is that the pool of potential users of any
svstem contains individuvals who vary widely in skill and/or experience.
Furthermore, a given individual changes from novice to expert as a
function of practice. The developers of data entry macros-basic as well
as bhigher order--musc take into account these skill/experience differences
and provide sets of macros that will accommodate the entire range of
user skill/experience levels. In other words, any set of macros currently
under development that does not provide for simultaneous use by novices
and experts is seriously flawed.

LOGIC AND LOGICAL OPERATORS.

Boolean algebra expresses truth in a particular wav. It enables us
to express and keep track of the relationship between sets and variables
in a way that is very useful iIn the design and operation of switching
circuits and computers. Unfortunately, it doesn't correspond particularly
well with the way people analyze and keep track of things. With special

effort, some people can be trained to view the world in Boolean terms.

But only a small number of people can do it and the effort involved 1is
enormous. Some way has to be found to make computers understand people
rather than forcing people to adapt to a non-conventional mode of thought
and discourse. The use of data entry macros discussed earlier may be

one mechanism. For example, although the term Macro 7A, xx, yy might imply
different logical operations to a human and a computer, the result

produced by the computer will satisfy the request of the user. Here the
situation is somewhat analogous to the use of ideographics for communication
by Chinese. The speech of a Cantonese is unintelligible to a resident of
Peking and vice versa. However, they can communicate with ease via the
mutually understood written characters. In any event, the problem of

logic and logical operators caunot be solved by specialists in the

relevant technologies working in isolation. An integrated, concerted
effort is needed.

TASK MODULARIZATION.

Even a cursory observation shows that many of the procedures employed
in the operation of various automated systems are basically similar.
Yet from the operator's perspective each system is a new situation with
little carryover or transfer from the other systems. Take terminology,
for instance. One gets the impression that system designers, like the
Weather Bureau naming hurricanes, use a different combination of assigned
names for each new system. '"'Get' is alternated with retrieve, fetch,
obtain, bring, call, etc. Similar clusters of synonyms are used for
operations such as "store" or "list" or "transfer" or other common
operations. The number of combinations of the half dozen or so synonyms
for the dozen or so most frequently used operations is in the billions. P
We seem to be determined to use every one of them. It may be too early
to estab’ish absolute "standards" for terminology but a measure of
consistency would go a long way toward making computer systems more
approachable to Army users.

A similar situation exists with respoct to message formats. Every
formatted message contains a common set of elements and operations,
e.g., orginator, addressee, data file designators, operating instructions,
subject(s), actions taken by or affecting the subject(s), administrative
details (security, precedence, serialization), etc. Arranging the
messages in a consistent sequence would greatly increase the speed and
convenience with which military users/operators could interact with a
data processing system upon first encounter.

Consistent termi: gy and message formats are somwhat elementary
examples of task modula: ization. The concept can be extended to encompass
dvnamic processes associated with human-computer operations as well.

For example, the underlying processes involved in setting up a data file
or of retrieving a sub-set of the information in a data file are functionally
~1milar regardless of the subject matter contained in the file. Yet
i . existing system requires a different configuration of operations
v+ rrocedures for executing such functions as data entry, file set-up,
.r . retrieval, data transfer, etc.

~-51-

Although the use of standardized 'task modules" might reduce system
flexibility somewhat, the loss would probably be more than compensated
for though reduced operator error and training time. However, a valid
determination of the net trade-off of all relevant costs and benefits
would require inputs from all of the disciplines involved in the design
and operation of computerized information processing systems.

This brings me to the main point of my remarks, i.e., what has all
this to do with ISRAD? The notion of a Delphi procedure for coordination
of technological know-how has some obvious plausibility when considered
in the abstract. The virtue of developing various sorts of "standards"
and "modules" is universally recognized along with motherhood, apple pie
and 01d Glory. However, I believe that the ISRAD group has some character-
istics that make it well suited as a medium through which various trans-
systems modes and mechanisms of operation can be identified and standardized.

These characteristics include the presence of a critical mass of
personnel in all of the relevant technologies. There are probably 10 or
more engineers and scientists back at the office for each of the 200 or
so people here today. Not many organizations can muster this much
talent across such a wide range of disciplines.

ISRAD is mission oriented. That is, although we represent many
different technologies and organizations, we all share a common-goal; to
design and produce information systems that will help the US Army accomplish
its overall mission. This esprit de corps is a valuable asset in
interagency and interdisiciplinary cooperation.

Non-profit motivation. Because we are not concerned with the
commercial implications of data processing systems We are not constrained
by consideration of industrial secrets, market protection, product
obsolescence and the like. We can exchange information freely and base
decisions on criteria that serve long range national goals.

The ISRAD group encompasses a wide spectrum of technologies. The
entire gamut of system design specialties, e.g., military (user) require-
ments analysts, electronic engineers, computer designers, programmers,
human factors, cost analysts, production engineers, etc., are available
within ISRAD or are readily accessible to it.

For the most part, ISRAD agencies deal with the application of
developed technology. The Army's primary concern is to field systems
whose technological soundness and reliability are proven. Thus, we need
not be preoccupied with making sure that our "standards," macros, task
modules, etc., can accommodate esoteric or untested techniques being
investigated at the laboratory level.

All of these characteristics taken together make ISRAD an ideal
group to undertake an interdisciplinary approach to the functional
standardization of terminology, data entry macros, logic systems, task
modularization and other modes and mechanisms of human-computer interaction.

-52~

REFERENCES

Nystrom, C.0. and Gividen, G.M. Ease of Learning Alternative TOS Message
Reference Codes. Technical Paper No. 326, US Army Research Institute,
Alexandria, Va, September 1978.

Strub, M.H. Evaluation of Man-Computer Input Techniques for Military
Information Systems. Technical Research Note No. 226, US Armv Research
Institute, Alexandria, Va., May 1971. (AD 730 315).

Fields, A.F., Maisano, R.E. and Marshall, C.F. A Comparative Analysis of
Methods for Tactical Data Inputting. Technical Paper No. 327, US
Army Research Institute, Alexandria, Va., September 1978.

REQUIREMENTS I

Dr. Edward Lieblein

CENTACS

e A et

T—— P ey

REQUIREMENTS I

SESSION CHAIRPERSON: Dr. Edward Lieblein
CENTACS

SESSTON SUMMARY

It has become clear that inadequate approaches to software/system
requirements development have contributed more to the high cost and poor
performance of software than any other area. This is especially true in
the domain of embedded computer systems where the software is not readily
separable from the hardware. Inadequate specification of initial require-
ments may be carried through several levels of "requirements engineering"
before they are detected, and in many cases, such problems are not detected
until the project has reached the programming, integration and test, or
even the operational phase. The relative cost to correct a specification
or design error increases significantly when such errors are discovered in
later phases of the project.

This session explored the complex area of software/system require-
ments from several viewpoints. The first paper described experiences with
respect to application of the Software Requirements Engineering Methodology
(SREM), a computer-aided approach to definition and analysis applicable to
real-time systems. The second paper discussed a hierarchical decomposition
methodology that takes requirements through various stages including formal
specifications of requirements "modules". The decomposition of requirements
for a secure real-time tactical executive was described as an illustration
of the approach. The third paper addressed the issue of software require-
ments from the viewpoint of the project manager who is concerned with the
specification of software in the Request for Proposal for an embedded com-
puter system and management control for software development throughout
the contractual effort.

Computer-Aided Requirements Generation
An Evaluation

Carl G. Davis

BMD Advanced Technology Center

The application of the computer as an analysis tool in the
requirements definition phase of system development has been demonstrated
through the application of the Software Requirements Engineering Methodology
(SREM) to a wide variety of projects. This paper discussed conclusions
drawn from experiences with SREM and suggested research directions to
further enhance the requirements definition process.

COMPUTER-AIDED REQUIREMENTS GENERATION-~AN EVALUATION

Carl G. Davis
Ballistic Missile Defense Advanced Technology Center
Huntsville, Alabama

Introduction

The Software Requirements Engineering Methodology (SREM) was developed as an
integral part of an overall software development approach, entitled the Software
Development System (SDS) [1]. SREM was developed to significantly improve the
capability to develop requirements for a data processing subsystem when system-
level definition had been given. This system was designed for problems inherent
in software development for Ballistic Missile Defense (BMD) systems and was
sponsored by the Ballistic Missile Defense Advanced Technology Center (BMDATC),
Huntsville, Alabama.

SREM was developed during the period of 1974 to 1977 and evolved through
experiences gained and requirements derived from application to a successive

set of complex problems. The approach has thus been verified through experience
during the development process. This paper will describe the experiences

gained in evaluation of SREM and discuss the evolving nature of requirements
engineering at BMDATC.

SREM Description

SREM was developed as an approach to aid in the generation of BMD data proces-
sing subsystem requirements., It consists of a combination of languages,
analysis tools, and procedures designed to allow effective statement of require-
ments and to eliminate or reduce known error sources [2,3] (Figure 1). Require-
ments are stated in the machine analyzable Requirements Statement Language
(RSL). The requirements may be stated interactively or in a batch mode and

are checked for consistency with previously entered data and for completeness

of description via automated analyzers. Structure is provided through R-NETS,
which form a path~oriented description of the system. The requirements descrip-
tion is stored in a relational data base, which is accessed through a flexible
retrieval system. Computer-aided simulation generation allows rapid evaluation
of the dynamic nature of the stated requirements. Upon the completion of

static and dynamic validation, the requirements are documented using automated
aids. Early structuring and analysis provide for rapid feedback to the system
designer,

SREM also includes procedures, steps, rules, etc., for the development of
requirements, Cost and scheduling models have been developed that enhance the
ability to estimate the impact of the requirements phase of software develop-
ment. The control and management of the methodology are interwoven and based
upon the defined tools and techniques, allowing greater efficiency and accuracy
in management information.

-56-

Buyaaautduy sjuawaifnbay——yoeroiddy auL °1 2an8714

$3HNA320¥d OGNV S431S 03

N1330 — ADOTOQOHLIW Y

\\ JONVWHO4H3Ad ®
NOILVINIWNNDO0AQ © SINIWIHINDIY HOS ALIIgY3OVHL ©
NOILYINWIS © AHOLISOd3Y ST3IAOW NOILVINNIS ©

NOILOVHLIX3 Viva 318IX3Nd © JYHINDD © SIN3W3YIND3IY 3SVO 1531 ©
SAIV SISATVYNY 3sva viva viva e

I™UNLINYLS ©
40 NOILINIZ3a @
,LVHM, ONILVOINNWNOD HOd4 TOH ©

39VNONYT INIWILYLS SINIWIHINDIY

1
~
9
SISATVNY
V1vVQ GNV NOILVH3IN3D 3
NOILNIAX3 NOILVYINWIS SNOILIN ”MC NOILVISNVHL
= | NOULYINWIS \'I/ 54
$3HNLINYLS
SJIHSNOILVI3YH
SANIW3HIND3IY NOILVINIWND0Q *® NOILJIHIS3a
IONVYWNHOAY I SISATYNY S3LNBIYLLY 40 AJN3LSISNOD ©
$$3004d ol1LVLS ® SS3IN3ILIT1ANOD ©
SIN3IWAT3 NOILYH3IN3D

NOILOVYHLX3
ANV SISATYNY
SLN3IW3HINDIY

13N—Y
3AILOVYILNI

<
N

SLNIW3LIND3IY
IONVWUOIY3d
WILSASENS
ONISSIO0Hd viva

3sve viva
AVNOILY13H

o

Requirements Structure

The specification of the structure of processing steps in RSL is through the
element R-NET [4]. Each R-NET details the response of the system to particular
stimuli through defining the sequence of ALPHAs (processing steps) to be
followed to generate changes in system state and responses to the environment.
When all of the required steps are completed, the R-NET processing terminates.
The sequence of ALPHAs is specified by giving a graph model of the sequence in

a structure declaration associated with the R-NET. A sample R-NET showing

both graphical and textual form is shown in Figure 2., The flow structure of

an R-NET consists of nodes and the arcs that join them. Five types of primitive
nodes may be placed at any point on the structure (e.g., and/or nodes).

Requirements Statement Language (RSL)

The language, RSL, is designed to allow a description of problem- rather than
solution-oriented attributes and contains primitives for specifying structure
in terms of processing flows, data, processing actions, and timing and accuracy
requirements. Informative and descriptive material and management~related
information may also be specified., RSL is an extensible language since certain
primitive concepts are initially built in which can then be used to define
additional complex language concepts. The primitives are elements, attributes,
relationships, and structures. From these, a nucleus of concepts has been
evolved through usage which, to date, has proven sufficient. The concepts of
this baseline language consist of 21 element types, 21 attributes, 23 relation-
ships, and 2 types of structures. Future users of the language can easily add
to the nucleus by means of the extension features provided by REVS.

Analysis Tools

REVS is an integrated set of tools used to support the definition, analysis,
simulation, and documentation of software requirements., A key concept of REVS
is that all requirements are translated into a central data base called the
Abstract System Semantic Model (ASSM). The RSL statements themselves are not
stored in the ASSM. 1Instead, they are translated into representations of the
information content of the requirements statements. This provides an efficient
and flexible means of maintaining a large software specification in a relatively
small computer data base.

The ASSM is a relational data base providing a common source for all require-
ments analysis, modeling, and documentation. The commonality of all data
ensures .hat any combination of extractions from the ASSM at any time (e.g., a
document and a simulation) will be mutually consistent. That consistency is
essential to asserting that the requirements modeled in validation of the
specification are equivalent in every sense to those written in the requirements.

REVS provides the mechanisms for entry of data into the ASSM as well as trams-
lation and interactive graphics, and a powerful set of tools for analysis
termed Requirements Analysis and Data Extraction (RADX). Tramslation is the
process of converting RSL statements into the ASSM information, where the

-58-

R_NET START ANET: SAMPLE.
STRUCTURE:
INPUTINTERFACE 11
VALIDATION.POINT V1
ALPHA A
INPUTINTERFACE :zn.scr ENTITY.CLASS IMAGE SUCH THAT (Y<2)
ALPHA B
FOR EACH FILE HISTORY RECORD
«@———— VALIDATIONPOINT R ANETC D
AND
ALPHA D
ALPHA CONSIDER DATA STATUS
IF {(READY)
ALPHA E
ENTITY SELECTION OR (NOTREADY)
ALPHA F
END
. v END
AND IF (X>5.0)
ALPHA G
VALIDATIONPOINT V2
OUTPUTINTERFACE 01
~CONSIDER OR” OoR {x g'g’
ALPHA H
OUTPUTUNTERFACE 02
AND ALPHA J
ALPHA J
TERMINATE
NOTREADY OTHERWISE
. EVENTQ
TERMINATE
END
END

(X 5.0)

EVENT

OUTPUT_ INTERFACE

Figure 2.

TERMINATE

R-Net Description

source of the statements may be cards, card images on tape, or keyboard entry
from a terminal,

Interactive graphics are provided through a software package executing in
conjunction with DataDisc Anagraph color graphics consoles to provide ASSM
entry and documentation. It permits entry of structures and referenced elements
in a manner parallel with the translator and may be used in conjunction with
translation in an operational environment., Significantly, this allows the

user to attribute graphical information to his structure, both for multicolor
display on the Anagraph and for documentation via CalComp plots.

Information held in the ASSM may be selected for output using RADX. This tool

is responsive to user direction in selecting either a re-creation of the
information translated into the ASSM, or the formatted abstraction of that
information in a user-defined HIERARCHY. The combination of these features
allows complex selections to be effected, so that all information needed for
documentation and that essential to configuration management can be abstracted
from the system without the encumbrance of irrelevant data. Since all data
abstractions are drawn from a common ASSM (and since that data base is con-
firmably consistent within itself), even redundant assertions in data extractions
are absolutely consistent with one another.

Both static and dynamic analysis are provided by REVS in order to determine
the internal consistency of the ASSM as well as its dynamic character. Static
analysis is performed in RADX, which examines the data connectivity through
the requirements to determine that the laws of logic and the conventions of
the language are fully satisfied throughout. Some forms of completeness
testing are also accomplished, determining, for example, that constants are
provided as required; the scope of completeness testing is largely at the
discretion of the user, since he may define extensive static analyses through
RADX commands to supplement those inherent in the system.

Dynamic testing is accomplished by exercising the requirements against a model
of the environment in which the system is to execute., Such simulations are
provided by an automated simulation builder and a software package supporting
its execution. Two different levels of simulation are supported: analytic,
in which high-fidelity models of the environment and explicit performance
measures are provided; and functional, in which the connectivity of the system
is validated with nonanalytic models.

Status

The REVS system has been implemented on the Texas Instruments Advanced Scienti-
fic Computer both at the BMDATC Advanced Research Center (ARC) in Huntsville,
Alabama, and at the Naval Regearch Laboratory in Washington, D.C. In additijon,

it is hosted on the CDC 7600 in Huntsville, Alabama, and at MDAC, Huntington
Beach, California, and the CDC CYBER 74/174 TSS at TRW, Redondo Beach, Califormnia.
The REVS software consists of 50K lines of PASCAL and FORTRAN code. With the
overlay structure, REVS requires approximately 220K words to execute, including
1/0 buffers, stack, and heap space.

The methodology procedures have been documented, and research on this phase of
the development has been completed. Experience is now being gained through
the use of this methodology within the BMD community. The application of SREM
to the distributed enviromment is being investigated.

Methodology Evaluation

The evaluation of any methodological approach for the development of software
is an extremely difficult task within itself [5]. This difficulty is compounded
as one considers measuring the effectivness of a phase of development such as

requirements engineering, which has significant impact but relates only indirectly

to the final product. Evaluation against a standard would be highly desirable
but one does not exist. The "evaluation by doing" approach is usually limited
by the dollars required to define, implement, test, and evaluate a system of
sufficient complexity to demonstrate success. In addition, measurables during
the experiment must be carefully chosen to allow effective evaluation and
comparison, The double~blind or latin square approach to experimental evalua-
tion helps very little in this area since the learning curve effect tends to
warp results., Finally, since we are dealing with such a labor intensive
activity, it is difficult to separate the inventive capability of the engineer
from the effectiveness of his supporting tools. A good engineer supported by
an excellent technology may exhibit the same character as an outstanding
engineer supported by an average technology. With these views in mind, the
SREM technology was evaluated with a light toward obtaining as much information
about its character and capabilities as possible through a combination of
evaluation and experimentation. The evaluation approach took the form shown

in Figure 3 and consisted of an evaluation of effectiveness against known
errors, evaluation of methodology capabilities, and an evaluation by doing.
Effectiveness data have been generated for each of the areas [6]. Particularly
noteworthy is the large reduction in requirements errors (Figure 4) being
propogated to the next development phase,

The utility of SREM in requirements development has been demonstrated on a
wide variety of projects [7,8]. These range from small problems designed to
exercise one aspect of requirements development to large systems reflecting
portions of defense systems. SREM has been also used in several roles for a
wide variety of customers. Primary usage has been in a verification role, to
verify a specification for the purpose of identifying problem areas, or in the
role of defining new or expanded requirements capabilities. SREM was applied
to the redefinition of requirements for the improved HAWK/TSQ-73 system [9].
This activity resulted in a complete test to the highly complex air defense
arena. Assessment led to the identification of improvements that will increase
SREM effectiveness.

The results of exposing SREM to divide user environment are summarized in the
following paragraphs:

) Computer-aided requirements generation is extremely valuable in the
reduction of commonly occurring requirements errors.

DEMONSTRATE
ABILITY TO
ELIMINATE
KNOWN ERROR
SOURCES

DEMONSTRATE
PRODUCTION OF
QUALITY

REQUIREMENTS

DEMONSTRATE
ABILITY TO
EFFICIENTLY
GENERATE
REQUIREMENTS

DEMONSTRATE
RELIABILITY AND
ACCURATE
MODIFICATION
OF REQUIREMENTS
DEMONSTRATE
YOU CAN

e COST & SCHEDULE
CHANGES
ACCURATELY
LOCATE CHANGES
® SUPPORT TRADEOFFS
ACCURATELY
REGENERATE CHANGE,

IMPROVEMENTS
IN COST, SCHEDULE,
QUALITY OF

REQUIREMENTS

DEMONSTRATE THIS
1S A MANAGEABLE
APPROACH

CLEARLY DEMONSTRATE
YOU CAN ESTIMATE

» COST

e SCHEDULE
YOU CAN MEASURE
PROGRESS

QUANTIF
IMPROVEMENT OF

e IMPROVED DETECTION
OF FRRORS
AUTOMATED ANALYSIS
TOOLS
ACCURATE COSTING
SCHEDULING &
CONTROL

QUANTIFY

MPROVEMENT

Figure 3. Proof of Principle

-62-

CAPABILITY TO
DESCRIBE ALL
TYPES OF
SUBSYSTEM
REQUIREMENTS

CAPABILITY TO VERIFY
REQUIREMENTS
DESCRIPTION

CAPABILITY TO SUPPORT
PERFORMANCE ANALYSIS

CAPABILITY 10 AUTOMATE
DOCUMENTATION OF
REQUIREMENTS

UoTIONpaY 1031y WAYS ¥ 2an81g

ATIWVS (GZ61) dLS - SWIT8OHd SLNIWIHINDIY IUYVYMLIOS

3741Lvd 31LVND3IAVNI
HYITONN -NOINI/LNTL /3137dWO0INI

1NDY -SISNOONI /ONISSIN 34008

AWDoYy -40-110

A.9HO/M3N 1934HOINI LNDH

\\ e P et (%L'0)
7

\
\ Y72 o

\

378vL03130 10N ﬂU

3SVHd SLNIW3HIND3U NI p
SAIWW3IHS A8 378V10313Q 777

3NI3sva
LNIHYND
N} 10N
1WDY

{%G'L)

-0l

'

- oy

(3TJNVS TVLOL 40 LNIDOHId) SIONIHHNIOO

-A3-

AD=A10% 252

UNCLASSIFIED

1978

INTERNATIONAL BUSINESS SERVICES INC WASHINGTON DC F/6 9/2
US ARMY SOFTWARE SYMPOSIUM (2ND) HELD AT WILLIAMSBURG, VIRGINIA==ETC(U)
$ M TAYLOR DAAK70=78=-D=0030
NL

T AR i ————

[The computers required to host the support software are generally
high~speed machines. The amount of checking and analysis required
currently doesn't lend itself to small machine application.

. Even on large machines (e.g., CDC 7600 computers), a complex require-
ments statement may result in a data base that exceeds memory size.
Simulations also soon exceed available storage. In addition, running
times for complex searches through large data bases become costly in
terms of complex time,

. SREM aids greatly in adding structure to requirements. This structure
forces early consideration of the implication of data processing
within an overall system context.

o The RSL has proven adequate to express requirements over a wide
variety of projects. Extensions to the language identified have
been within the capabilities of the uxtension features.

. Simulation for dynamic verification of requirements has proven
effective, but additional capability and greater tie-in with the
design phase would prove useful.

° Management and control of requirements development using SREM has
been enhanced by the discipline of the computer as an in-line develop-
ment tool., However, the improvements are a matter of personal taste
and are not quantifiable,

SREM represents a giant step forward in the effective utilization of the
computer as a development tool. Ougoing efforts are resulting in improved
efficiency of operation and extensions have been identified which will allow
its application to distributed data processing.

Acknowledgements

The thoughts presented on SREM have evolved over a number of years as part of
the SDS development and reflect the views and contributions of a large number
of people. Specifics on SREM are from documentation supplied by TRW Defense
and Space Systems, Huntsville, Alabama.

References

1. C. G. Davis and C. R, Vick, "The Software Development System," IEEE
Transactions on Software Engineering, January 1977, Vol. SE-3, No. 1.

2. M. W. Alford, "A Requirements Engineering Methodology for Real-Time
Processing Requirements," IEEE Transactions on Software Engineering,
January 1977, Vol. SE-3, No. 1.

3. T. E. Bell, D. C, Bixler, and M, E, Dyer, "An Extendable Approach to
Computer-Aided Software Requirements Engineering," IEEE Transactions on

Software Engineering, January 1977, Vol. SE~3, No. 1.

—64-

M. E. Dyer, et al,, REVS Users Manual, SREP Final Report, Vol. II, TRW
Defense and Space Systems Group, Huntsville, Alabama, August 1977,

C. G. Davis, "Requirements Problems in Large Real Time Systems Development,"
INFOTECH, State-of-the~Art Report, Structured Analysis and Design, 1978,

M. W. Alford, et al., SREM Experimental Results, TRW Defense and Space
Systems Group, Huntsville, Alabama, 27332-6921-025, 1 June 1977.

M. W. Alford, "Software Requirements Engineering Methodology (SREM) at
the Age of Two," Proceedings COMPSAC 78, Chicago, Illinois, November 1978.

R. C. Slegel, "Applying SREM to the Verification and Validation of an
Existing Requirements Specification, COMPSAC 78, Chicago, Illinois,
November 1978,

P. H. Browne, Jr., G. C. Hitt, and R. W. Smith, Utilization of SREM in

IHAWK/TSQ-73 Requirements Development, TRW Defense and Space Systems
Group, Huntsville, Alabama, 27332-6921-034, September 1978.

-65-

An Approach to Requirements Definition

For Real-Time System

David Egli

U.8. Army Communications Research
& Development Command
Center for Tactical Computer Systems
Software Engineering Division

System requirements do not magically appear. They are derived
from various requirement inputs, iteratively sorted, and hierarchically
structured such that the system requirement definition can be understood.

The Tactical Executive provides the foundation from which a
family of Secure Real-Time Tactical Operating Systems (TACEXEC) for com-
puterized weapon systems could be realized. The TACEXEC provides an
illustrative example of requirement definition methodology down to the
modular level.

66~

|

AN APPROACH TO REQUIREMENTS DEFINITION
FOR REAL TIME SYSTEMS
David Egli

US Army Communication Research and Development Command
Center for Tactical Computer Systems
Software Engineering Division
Fort Monmouth, New Jersey

I. Introduction

System Requirements do not magically appear. They are derived from various
requirement inputs, iteratively sorted, and hierarchically structured such
that the system requirements definition can best be understood.

The Tactical Executive (TACEXEC) provides an illustrative example of
requirement definition methodology, down to the modular level.

II1. Background

Traditionally, when the Army developed a new computer weapon system, the
contractor was not required or encouraged to use any existing sof tware
previously developed. This led to the proliferation of many (170 systems)
Ad~hoc, non-secure and unmanageable systems. This was the result of not
having an all encompassing design philosophy which would provide the basis
for a library of proven software programs, common across a spectrum of
applications. The greatest cost saving could be realized in the area of
Secure Realtime Tactical Operating Systems.

The Tactical Executive provides the foundation from which a family of
secure Real~time Tactical Operating Systems could be built. The paper
describes the requirement definition stage and a summary of resulting
system design.

I11. TACEXEC Reguirement Definition

The TACEXEC requirements were derived (Figure 1) from the integration of
three requirement sources: Tactical Mission Requirements, Tactical
Application Requirements, and TACEXEC Project Requirements. The require-
ments were then ordered based upon what level of the weapon system

hierarchy they best could be met (Section D). Summary of the input require-
ments are tabularized in Figure 2.

o (RSN - ‘
A d

A. Tactical Mission Enviromment Requirements 1

Modern Army computer weapon systems are required to function under the
most hostile conditions twenty-four hours a day. The system must be
capable of defending itself against sophisticated attacks by a techni-
cally oriented enemy using probabilistic and crypto-analytic approaches,
while defending itself from within against error prone application
mission software, hardware failures, and "friendly troops" entering
incomplete system commands and erroneous -information. At the mission
level, security threat monitoring, reliability, physical overrun, and
processing speed i a major consideration in all tactical computer 1
systems and thus was a major factor in the tactical mission requirements.

B. Application Software Requirement:

Tactical military systems for computerized communications, command-and-
control guidance, surveillance, and target acquisition applications are
generally characterized as consisting of a combination of critically
time-constrained "real-time tasks which directly interact with the mission
enviromment, ''real-time" tasks which support the system operationally. and
"non-real time"” tasks which provide system diagnosticS and maintenance
capabilities. The typical tactical system includes provision for:

1. The acquisition of data from sensors, operators, external data
links, etec.

2. The integration and compilation of this data into a data base to
provide detailed information structures (tactical situation descriptive
parameters).

3. The processing of these information structures for more precise
quantitative descriptions of the tactical situation.

4. The distribution of data and/or control information for sensor
and weapon, activation and operation. This includes the dissemination of
information for display of the tactical situation for operators and users
or transmission of data to remote systems.

5. System access control, authentication, and audit trails capability.
C. Tactical Executive Project Requirements:

The intent of the project was to develop a set of operating system
primitives (Kernel) upon which a family of Tactical Operating Systems
could be developed for supporting military application software. The
TACEXEC was therefore required to be machine transportable, application
independent, efficiently realizable using a Higher Order Language (HOL).
A major concern was that the project requirement's would not impact the
TACEXEC requirement goals. It later turned out to be the inverse case.

TACTICAL
MISSION
ENVIRONMENT

TACTICAL
APPLICATIONS

TACEXEC
PROJECT

-—*

—

SE—

REQUIREMENTS
INTEGRATOR

FIGURF 1} TACEXEC REQUIREMENT DEFINITION

~-69-

TACEXEC
REQUIREMENTS

ST e

had s

Tactical mission environment requirements
Reliability
Security/Protection
Capable of rurning in degraded mode
Righ computational throughput
ContinuoOuUs operation
Applicatior software requirement
Real-time/near real-time tasking
Access control
Support multi-processor systems configuration
Multi-level secure communications/ADP
Reliability
Drive non-standard military devices
Protection/isolation of tasks
Threat monitoring capability
Exception harndling
Audit trails
Support data Base Management Systems
Project Requirements
Machine independence (CPU, I/0 devices)
Application independence
Efficient realization of design

Implemention using HOL

FIGLRE 2 Summary of Input requirements
~70-

Tactical executive requirement definition
Real-time/non real-time tasking
Provably secure: Multi-level security model
Guarantee of service
Support family of real-time execution
High reliability
Support multi-processor configuration
Support process coordination
Support multi-processing
Support virtual memory
Support non-standard military I/0 devices

Support Primitive File system

fachine independent

Application independence

FIGURE 3 Summary of TACEXETU requirements

-71-

D. Requirement Decomposition

The first pass is to isolate the common requirement set. These requirements
will be met by the lowest abstract machine levels, (TACEXEC, Kernel). The
second pass and subsequent passes isolate similar requirements into category
sets (family operating systems). These form the middle abstract machine
levels. The remaining form the upper abstract machine requirement set.
Tactical systems do come in several flavors therefore requiring a family

of operating systems. However, the family could be built from one Kernel
(TACEXEC). It is therefore necessary to make one/several last requirement
pass(es) defining the boundary between middle/Kernel abstract machine levels.
The TACEXEC requirement (Figure 3) will be met by each of the five abstract
machine levels described in section V.

Since requirements change in the real-world, only those abstract machine
levels relating to the requirements changes will be affected.

IV. Security Requirement for TACEXEC

In the TACEXEC we wish to enforce a restriction on the way information
may be passed from task to task. The particular restriction of interest
is called Multilevel security. Each process nas associated with it a
CLEARANCE and a CATEGORY SET. The system has a fixed finite number of
clearances that are totally ordered by the relation "less then." For
example, the Clearance CONFIDENTIAL is less than SECRET, which is less
than TOP SECRET. For convenience, clearances are represented as
integers.

The definition of the multilevel security model can be stated simply.
For any f{ and fy in F: where f;,f2 are functional references in
domain F, K and 1 are the security and integrity levels respectively.

f1> f; = K(f;) €= K(F2) AND I (F1) >= I (f2)

This simply states that if there is any possibility of information
transmission between two function references, then the transmitting
function reference must have a security level less than or equal to
that of receiving function reference, and the receiving function
reference must have an integrity level less than or equal to that of
the transmitting function reference.

In other words, information carn only flow upward in security or remain

at the same level, or only flow downwared in integrity or remain at
the same level.

=72~

The formal specifications for the TACEXEC were written in SRI International
specification language SPECIAL. The security model was confined to two
modules READ-ALLOWED, WRITE~ALLOWED and enforced in following five TACEXEC
modules.

virtual memory !
file system ;
user/system 1/0 :
dispatcher

Synchronization Primitives

An example of the formal specification of secure requirements module
READ-ALLOWED and WRITE~ALLOWED is given in Figure 4. The following
SPECIAL nominclature is as follows:

= equal
& less than or equal
>= pgreater than or equal
1 such that
» implies
‘ comments

-73-

The definitions consist of: abstract data type and Boolean Algebra and
is beyond the scope of this paper.

TYPES

clearance: (INTEGER i ' 0 ¢ 1iand i &= max_clearance)
category set:
(VECTOR OF BOOLEAN cs | LENGTH (cs) = number_of_categories);
accesslevel:
STRUCT OF (clearance security clearance;

category_set security categories;

clearance integrity clearance;

category_set integrity categories);

PARAMETERS

INTEGER max-clearance $(the highest clearance),
number_of categories,

DEFINITIONS

BOOLEAN read allowed(access_level subject_al, object_al)
IS subject_al.security clearance
>= object_al.security clearance
AND subject al.integrity clearance
&= object al.integrity clearance
AND(FORALL INTEGER I ' 0 41 AND i {= number_of_catergories:
(object _al.security categories {i])
=>» (subject_al.security categories (il)
AND (subject_al.integrity categories Yi])
=Ppotject_al.integrity_categories (i]));

BOOLEAN WRITE-ALLOWED (access-level subject_al, abject_al)
Is READ-ALLOWED (cbject_al, subject al);

FIGURE 4

r— di e e nhe . am 1.

4 it ot At Skt s

o

V. TACEXEC DESIGN REQUIREMENTS

A. Real Time Behavior

The intent of TACEXEC is to be responsive to the needs of tasks. For real
time tasks this need is related to tasks being served within a certian time
frame. Among the tasks that might be served by TACEXEC is a scanning radar,
delivering signals at regular intervals. Another task could be a fire control
system, that requires extensive service only in bursts. Message transmission
is another task, that is typically of low criticality except that there might
be a maximum delay that is acceptable for the transmission of a message. Each
of these tasks poses different needs on TACEXEC leading us to three classes

of tasks: interative, demand, and background.

How does the system guarantee service requirements, particularly for the
interactive and demand tasks? That is, how is it assured that tlie systen
loading is sufficiently low such that the service needs will be met, but
not too low so as to preclude the inclusion of additional tasks that could
be handled. A scheduling algorithm was developed that can accommodate maximum
loading of the system. However, the processing time required for this
scheduling algorithm most likely precludes its use in any real time system.
On the other hand, if a scheduling algorithm based on tasks priority -- an
easily implemented algorithm -- is used then the system can be loaded such
that in excess of 607 of the time slots will be guaranteed to be available
for task processing.

B. Functional Capability
In general, the interface (Figure 5) provided by a real time operating system
need not be as powerful as that for a general purpose time-sharing system
(e.g., Multics). However, a real time operating system is intended to execute
collections of interacting programs and should have sufficient functionality
to realize some reasonably complicated subsystems. The TACEXEC provides the
following features at the user interface.

. virtual memory consisting of address spaces and segments

. a file system

processes

. synchronization primitives

Suor3oung adejlejul 19s() ITqISTA DIXUIVI S JdNOId

IremM
aNuUTIuo)
ssadoad doas snjels aduey)
ssadoad punoadxoeq a[npayds puBwWOD 3I3TAI(Juswdas-199
ssadoad puewap a[npayds andano asyaa(23Tam-3uaudag
$83201d aATIRIIJUT ITNPIAYDS andur 3draa(peai-jusaw3ag aTTJd puaddy
yo0T1g sSnN3jels 3ATIIIY juawdas~-339T3Q 3TTd peolun
dnajyem-a3e21) 3DTAIP-3ITIAM juawdas-aieai) 3114 peol N
JUdA3-21B31) 20TAdP-pEIY aoeds-ssaappe-213aTa(3TTd 339713¢d '
13T JTIUapT-ssadoad-azeal) JUaAd 39§ aveds~-ssaippe-23€31) 3TTd 23e21)
YIHOVIVASId 0/1 WA1SXS KHOWIW TVILIIA WILSAS d114
A501d
20Ua11Nn32(Q snjelg a23uey)
ssadoxd 23272d SNJe3S JAIIDBY
juaag - 231831) pueWWO) Ppudsg
$s3d0a4 punoadyoey - 3ieaid AJ2TA3(Q 3ITIM
§$89201g - PuBWY(] - 33BIID 321A2(peay A
SS3201J~3AT3IRIAIUL ~ 33IBII) Juaay 313§ d

SIATLIWIYd SS320dd 0/1 ¥dsqa NOTLLVNIQY00D SSd00dd

Conspicuously absent from the system are: directories, linkage sections,
support for procedures, among other things that are in Multics. It should
be noted that these later facilities would be built out of the TACEXEC
facilities providing the bases for a family of realtime operating systems.
(Thus, TACEXEC can be viewed as a kernmel out of which a family of operating
systems could be constructed).

C. Efficiency

As indicated above, a classic principle underlying an operating system is
the efficient management of resources (cpu, disk, main memory, etc.). In
a real tire operating this principle is in conflict with, and of secondary
importance to the guaranteeing of service to tasks. In particular, the
efficient management of tasks often introduces nondeterminism such that
accurate performance prediction is not possible. Fortunately, the critical
tasks (iterative and demand) typically require little memory and cpu time
for each execution. Also, there is little sharing of 1/0 devices in a real
time environment. Thus, such tasks can be given total access to all needed
resources of the system for the short time required for execution. Also,
if the program and data for these tasks is retained in main memory, then it
is possible to guarantee (by proof) that the service needs of these tasks
are met. This characteristic of the tasks led us to the decision that the
virtual memory system is to be totally resident in main memory.

There are other issues regarding the efficient realization of TACEXEC. A
high level language 1s desirable for casing the burden of implementation and
to aid in portability. However, there are important features of a high level
language that relate to the efficient implementation requirements.

In addition, there are efficient hardware support for certain functions is
required for a real time system, e.g., context switching.

D. Security

TACEXEC is intended for an environment where multiple users have simultaneous
access to the system, and wish to be assured that their information is not
available to certain other users -- on an accidental or intentional basis.

That is, the system is not to be a vehicle for the erroneous handling of
information. For a military application, the multilevel security model seems
appropriate (Section IV). In this model, each user has a clearance and a
category set; the cartesian product of clearances and category sets define

a partial ordering of security levels. The values for clearance are the
conventional classifications: UNCLASSIFIED, CONFIDENTAIL, etc. The categories

represent an orthogonal restriction, and include such "controls" as NATO, ATOMIC.

The model requires that information stays at the same security level or flows
upward.

———

The model also includes integrity which provides additional restrictions

on the flow of information. For example, based on the security restriction
alone, there are no limitations to the "upward" transmission of information.
That 1is, the model does not prevent the "destruction' of a SECRET document
by an UNCLASSIFIED user. The inclusion of integrity places limitations on
such modification.

E. Provability

TACEXEC has been designed to be provable, in partucular by a mechanical
(computer program) program verifier. The main properties of concern here
relate to security and guaranteeing that tasks will receive the promised
service. Other properties, also of interest, relate to guaranteeing that
the user interface operations provide the intended functional behavior.

The development of system according to SRI International's Hierarchial
Development Methodology (HDM) is accomplished in stages. For example, in

the specification stage, each of the system modules (a module is provided for
each "facility") is formally described by a specification. In the implementa-
tion stage, the operations of each module are implemented by a program. A
proof is associated with each stage. For example, it is possible to prove
that the multi-level security model is satisfied by the specifications of

the modules of the user interface of TACEXEC. It is also possible to prove
that the guarantee of service property is satisfied by the user interface
specifications. Separate proofs can demonstrate that the programs are correct
with respect to the specifications.

This separation of proofs serves to simplify the overall proof process, as
any useful decomposition of effort should do. In addition, it limits the
amount of reproving that must be done as the system evolves. For example,
a change to the implementation (possible to install TACEXEC on a different
processor) does not require any change to the specification proof if the
specifications are left intact.

F. Portability

No real time operating system can be totally portable. In order to achieve
efficiency, there will alway be machine-specific code. The Army's cencern

was to produce a system where the amount of effort required to move TACEXEC
from a machine on which it is successfully executing to another machine is

small.

Much of the effort involved in developing a system is associated with
"design”. In general, design is concerned with deciding what a system

is to do, avoiding details on how it is done. 1In HDM, the initial stagec
are concerned with design, while the later with realization. The output
of these early stages is a set of specifications for the modules and a
precise description of the structure of the system. These can serve as
the design for TACEXEC independent of the hardware on which it executes.

Furthermore, a system developed according to HDM is usually designed as

a hierarchy. (The TACEXEC hierarchy consist of five levels). Typically,
the modules of the upper levels are implemented by software, the middle
levels by a mixture of hardware and software, and the lower levels by
hardware. Thus, even the implementation affords a measure of portability,
in that many of the programs will remain intact in going from one hardware
to another.

~79-~

Nuts & Bolts of Software Acquisition

Thomas A. Rorro

U.S. Army Electronics Research & Development Command
Beta Joint Project Office
Integration Division

The Government is a major consumer of computer software. The
trend in system development is to imbed computer resources in all tactical
systems. The manager of these systems must understand the limitaticns of
computer software in order to effectively manage its development.

The expanded flexibility and capabilities of software make it
desirable for use in tactical systems. At the same time, however, these
attributes amplify human inefficiencies and create potentially grave prob-
lems in systems development.

The "Nuts & Bolts of Software Acquisition" address the cause of
software development problems and provides a "cookbook" approach of their
resolution. Top down design methodology is applied to system development.
The elements of a software development contract are described in detail.
In addition, the critical aspect of schedule which enforces the top down
approach is described.

NUTS AND BOLTS OF SOFTWARE ACQUISITION
Thomas A. Rorro

Introduction

Congratulations, you've been selected to develop a new system for the
US Army. The first questions to be asked are: What is it?, and How does
it fit into tactical scheme of things? Unfortunately, the more people you
talk to the more diverse the answers become. The only thing that's for
sure is that the system contains a computer and it will be better than what the
troops have now!

There is one more thing for sure. "You are headed for big trouble if
you're not careful!" There is hope however; and the intent of this paper is
to demonstrate that your problem can be solved by simply applying common
sense. In fact, software acquisition is as simple as A, B and C.

1. The Roots of All Evil

A. Flexibility.

Before the advent of computer technology, all system functions were
implemented in hardware. This technology severely limited the complexity
of the system functions which could be performed. Simplicity permitted the
design to proceed without the need for rigorous controls. Hardware develop-
ment by this method is efficient. The problem comes when a less than rigorous
controls are applied to software development.

The computer and its software provide the system designer with a new
flexibility. Changes can be made with the stroke of a pen. But, the error
in a single instruction cause the system to fail. The problem does not lie
with the computers interent flexibility. It lies in the designers inability
to completely describe his design and to communicate with the user. The
computer's flexibility simply amplifies this defect to the point of severe
consequence. The situation can be likened to the building of the biblical
tower of Bable.

B. Doctrine

There are two key elements in any system. The first is the mathematical
functions which it performs. And second, is the doctrine which defines its
use.

In the past, a system was developed in response to a users need. The
developer applied the available technology and produced a system which
implemented the mechematical functions required. The system was then
presented to the user who created the doctrine. These processes were not
completely independent but the interplay between the user and developer
were minimal.

The advent of computer technology completely changed this relationship.
The computer is capable of implementing both mathematics and doctrine. The

e e

 c—— -

two step process of mathematical system development followed by doctrine
development is now a single process. Because of this, the interplay

required between the user and developer has grown exponentially. And with

this growth comes the risk of fielding a system which is neither mathematically
sound nor meets the users needs.

C. Creativity

The flexibility and doctrine capabilities of the computer provides the
system architect a new opportunity to be creative. 1In the past, he could be
alone in his portion of the design and exercise creativity to the limits of
the technology. Now, the architect must share the system development with the
user. They must work together and be creative in their own area of expertise.

There is, therefore, a firm requirement for a formal design mechanism.

In the alternative, as men learn the system problems they begin to
exercise creativity. Often, this begins before they have completed the
learning prccess. As time passes, the developers become creative users and
the users become creative developers. Before long and with some luck, they
will each have reinvented the wheel.

D. Maitenance

Perhaps the last, but by far the most important phase of the system life
cycle is deployment. Once the system is in the hands of the troops, they are
sure to find hundreds of previously unimagined ways to make it fail. It is the
responsibility of system developers to provide support documentation for the
deployment phase which will provide for system maintenance.

The flexibility provided by the computer results in the requirement for
detailed documentation. At some point in the development cycle it will have
to be procured. The question is; When?

2. Most for the Money

In order to have a successful system, the developer must properly deal
with the issues of flexibility, doctrine, creativity and maintenance. Timely
documentation can provide the necessary elements to resolve each of these
issues.

The documentation represents a complete descriptioa of the system. As
such, it can be of great value in coordinating the efforts of the developer
with the desires of the user. It can provide a formal mechanism for the design
and the visibility to implement rigorous design controls. The technique of
applying documentation to this end is called top down design. A significant
factor of this approach is the cost which is born early in the development
cycle. Essentially, the cost of documentation is the same regardless of when
it is performed. The benefit of top down design is its ability to deal with
the issues of flexibility, doctrine and creativity at little additional cost.
As such, it represents the most for the money.

3. Top Down Design

In general terms, top down design is simply the development of a system
starting with the broadest definitions and working to the minute details.
It is necessary to partition this effort so that measurable milestones are
available. Taking industry, developer and current procedure into account;
a three tier system has proved best.

The first tier is the functional description (A level specification).
This document is produced by high level personnel with significant user
interaction. The final document should be meaningful to everyone affiliated
with the development.

The second level uf development is the Input/Output and mathematical
description (B level specification). The user is concerned with the Input/
Output and in particular with the man-machine interface. The engineers and
scientists are concerned with the mathematics as well as the cohesive aspects
of the system.

The third tier of development is the implementation (C level specifica-
tion). This document is of prime concern to the programmers with only minor
involvement of the engineers and scientists. The C specification contains
a description of the system in detail including the listing of the software
program.

4. The Carrot and the Stick

There is the age old problem of getting what you want when you want it.
In order to insure that system development is proceeding smoothly, the
developer needs both visibility and control.

Visibility is achieved through the documentation. As each level is
completed it is reviewed by all parties. Formal concurrence represents
the completion of that major milestone. It is appropriate to tie payments
and awards to successful completion of each level of specification. Thus
the incentive of on-time performance and a quality product is provided.

A system is not built until the software is programmed. But effective
programming cannot begin before the B level specification is complete.
Control can be achieved by restricting the programming through a contractual
stop. A statement to the effect that "programming shall not commense in
any form prior to receipt of an authority to proceed release from the
Government" will provide the required control. This release should be granted
incrementally as each draft C level specification is produced. The control
aspect of software development is critical to its success. It is imperative
that the authority to proceed release be given only after the design is
complete. To allow programming prior to this point is to invite disaster.

5. Contractual Elements

The implementation of top down design and the required controls involves
several elements. These elements include the specifications, design reviews,

-

testing, and a software warranty. Each of these elements is explained in
detail in the paragraphs which follow.

A. The A Level Specification

Software design and development must start from the top. Generation of
the A level specification begins shortly after contract award. It is the first
in the series of software design documents which describe the system in pro-
gressively greater detail. The A level specification breaks the system into
its main functional areas. The requirements of the Request for Proposal (RFP)
are reflected in this document. The A level specification provides a complete
system description including both accuracy and functional requirements.

Written properly, the A level specification could replace the RFP and any other
pertinent government documents. The document is designed to be relevant and
completely understandable to the highest level user and developer personnel.

The A level specification represents the contractor's understanding of
the system and its requirements. The delivery of the A level specification
represents a critical milestone in the development. As such, a design review
is required.

B. Functional Design Review

The Functional Design Review (FDR) is the mechanism by which the
government and contractor reach agreement on the requirements and capabilities
of the system. The results of the review are incorporated into the A level
specification and the document is formally appruved by the government. At
this time the A level specification is subject to formal configuration
management controls. The A level specification becomes the baseline for
development of the B level specification.

C. B Level Specification

Now begins the detailed design of the system. The function breakdown
of the A level specification is further divided into the modules of the B
level specification. The function and capabilities of each module is
specified with appropriate references to the requirements of the A level
specification. The main function of the B level specification is to provide
the complete mathematical description of the system. There is no separate
design process. The development of the B level specification is the system
design process and the B level specification is the documentation of the
design.

The B level specification is an important and detailed document. It
is made up of two volumes. Volume I consists of four parts: the User's
Manual; the Operator's Manual; the System Outline; and the Preliminary
Data Base Specification. The System Outline section is a system overview
description of the entire software system without delineating to specifics
of each independent module. The User's and Operator's manuals provide a

concrete description of the man-machine interface at a time convenient to
provide orderly input to the system implementation (C level design phase).
The Preliminary Data Base Specification raises the issue of orderly data
management. It is a preliminary specification because all the problems

will not surface until the C level design begins. However, since orderly
information flow 1is essential to an efficient software design the Preliminary
Data Base Specification is a valuable asset to the B level system design.
Volume I of the B level specification is of interest to both the user and
developer and should be carefully reviewed by both.

Volume II of the B level specification is the detailed description
of the system and its modules. It consists of the specifics of each
program and is prepared in accordance with Appendix VI of MIL-STD-490
supplemented by Appendix VI of MIL-STD-483.

Volume II of the B level specification is the critical document for
review by the developers software and system specialists. All the major
design decisions have been made and should be evident in this document.
Its completion is a major milestone in the software development effort.
A preliminary design review is held to resolve any discrepancies between
the B level specification and the A level requirements.

D. Preliminary Design Review

The function of the Preliminary Design Review is to provide a mechanism
for the government and contractor to reach agreement on the final system
configuration. The results of the review are incorporated into the B level
specification. The B specification is then submitted for government approval.
Formal configuration control of the B level specification can begin at this
time. There is an option however, to allow the contractor additional
latitude by requiring only limited configuration management. Under this
approach changes can be made by the contractor to the B specification. He
is required to inform the govermment of all changes. Since government
approval for all changes is not required, the cost implications can be
minimized. This technique must be carefully considered in the light of
system development status and the risk factor must be carefully weighed.

The completion and approval of the B specification sets the stage for detailed
design and coding to begin.

E. The C Level Specification

The modules defined in the B level specifications are further decomposed
and arranged to provide for efficient mechanization in the computer. Numerical
techniques are used and trade~off analysis is performed to implement efficiently
the requirements of theB level specification. The result of this analysis is
a partial C level specification. A Critical Design Review is held for each
partial C level specification. This review allows the government to insure
compliance of the C level implementation with the A and B level requirements.

-85-

Approval of the partial C level specification represents the authority
for the contractor to start coding. The listing of the code, the test results
together with the partial C level specification combine to create the complete
C level specification.

F. Critical Design Review (CDR)

The CDR allows the government a final point for review and control of
the design before it becomes a software program. All the fine details of
the module under review are available. The problem areas should be visible
to government software system analysts. Close coordination between the
government and the contractor should provide for cost effective solutions to
the problems which are uncovered.

G. Preliminary Qualification Tests

The completion of the C level design and implementation of each module
will proceed at different rates. Since the modules are defined to be |
independent a method of incremental testing is appropriate. The PQT is the !
test performed on each module. The order of testing of the modules is defined
in the PQT plan. The optimum PQT method is to build up the system by testing
the new module with all previously tested modules. This method provides
controlled system integration and testing. When all modules have been tested
and integrated the Final Qualification test is performed.

H. Final Qualification Tests (FQT)

The FQT is the system test. This test is performed in a two stage process.
Due to the expense of field testing a simulation test environment is recommended
for the initial stage. Upon successful completion of simulation test the
contractor is permitted to begin the second stage; field testing. The results
of both simulator and field testing are then documented and the system is
delivered to the government.

I. Physical Configuration Audit (PCA)

The government inventories and accepts all contract deliverables at
the PCA. There is no reasonable method to completely and accurately audit
the software. The government is assured of its quality by his previous
careful review and participation in the design process. The PCA should be
only a formality which consummates the govermment's efforts during the term
¢ the contract.

J. Software Warranty

Since validation is not practical, the government should require the
contractor to warrant the software. The software warranty will require the
contractor to fix and document software problems which occur during a period
of time after government acceptance. The warranty period may also be of

-86-

value as a means of educating an independent government agency in the
system's software maintenance procedures. This method provides the
government with insurance against problems which are not uncovered in the
sterile test environment.

K. Validate and Verify (V&V)

It is important to provide check and balances on any software
development. V&V represents a method to insure the quality of the software
product and the documentation. The cost of V&V can be astronomical if
carried to extreme. Experience indicates that the cost of each uncovered
error grows exponentially. A practical approach to V&V is to set aside a
small sum of money for an independent contractor. If his efforts are
fruitful continue the process. When the cost of his effort exceeds the
useful result the V&V effort should be terminated.

L. Schedule

The software development process of the A, B and C level specification
is serial. Within each level, however, parallel development of the individual
modules can be performed. This allows the contractor to apply manpower in an
efficient manner but preserves focal points in the design.

In the ideal case, the contractor effort should be suspended after each
submission until government review and approval is accomplished. This
provides the government with positive control of the software development.

If the contractor is allowed to begin the next phase of development
before the previous phase is approved the monitoring process becomes more
tedious. Basically, the government makes the assumption that there will be
no major problems with the contractor's software development. This is a
function of the software abilities of the contractor, and a careful analysis
of the risk is recommended before selecting this approach.

An example of a software development schedule is displayed in Figure 1.
The time allotted for each development will depend on the nature of the
system and the technical information furnished by the government.

6. Summary

There is an old adage '"'You get what you pay for." It is as true now as
ever and highly applicable to software acquisition. There are no magical
short cuts. The best way to approach the problem is through an orderly, step
by step procedure. By this approach, a development can run for a year or
longer without demonstratable hardware. It is a tough course to follow with
all the pressures to get the job done. Now, stick to your guns. The top down
approach is the only low cost, low risk method. It represents the difference
between success and failure,

-87-

NWEOS 1 Mol

-88-

LIFE CYCLE MANAGEMENT

MAJ Edward H. Ely
ATRMICS

LIFE CYCLE MANAGEMENT

SESSION CHAIRPERSON: Edward H. Ely
AIRMICS

SESSION SUMMARY

Preparation for future software life cycle management planning
requires serious contemplation of those factors which comprise the entire
life cycle process. Dr. Victor Basili (University of Maryland) began
the session by reviewing several life cycle elements in an attempt to
provide a better understanding of such life cyclie factors. Included were
reviews of the roots of data collection; an examination of the meaning of
milestones; discussion of life cycle dynamics and metrics; consideration
of the impact of tool usage; and the problems of technology transfer.

Dr. Thomas G. DeLutis (NRC) continued the session with a survey of software
1ife cycle complexity and the important role of modeling in early deter-
mination of such complexity. The ability to provide meaningful estimates
relative to various types of problems, plus the iterative nature of the
life cycle, were also discussed. Dr. J. David Naumann {(University of
Minnesota) concluded the session with a challenge to the "single-life-
cycle" concept commonly used to determine information requirements. Con-
tingencies which define the uncertainties in the determination of infor-
mation requirements, and alternative strategies for information requirements
determinations at different levels of uncertainty, were also described.

The methods put forth were no cycle, linear life cycle, recursive life
cycle, and prototype.

Toward Understanding the Software Life Cycle

Victor R. Basili

Department of Computer Science
University of Maryland

There is need for a better understanding of the software life
cycle process with respect to its management parameters and the resulting
product. This understanding assumes some basic theories about the activi-
ties of the life cycle process and the interaction of these activities, a
set of standard definitions for each of the activities and terms involved
in the process and resulting product, a taxonomy for each of these terms
which parameterize them for a particular environment or point of interest,
and the collection of data exposes what is actually occurring with respect
to each of these taxonomies for each of the terms. The development of
models and measures are then possible based on analytical theories or
empirical studies. These models and measures need to be validated for a
variety of projects based upon each of the taxonomies using data collected
during the life cycle process for each project. This should result in the
refinement of the theories for the local environments and the development
of new models and metrics.

Once a basic model of the life cycle process has been developed
with its associated management and development methodologies, it must be
transferred into practice by building tools for the manager and programmer
based upon these associated models. Data must be collected to give to the
manager information on the progress and quality of the product. These
methodologies can then be transferred from project to project, using the
developing data base of quantitative knowledge about the software life
cycle as background for management decisions on the current project and to
help further refine our models and metrics for future projects.

This paper discussed the basic components necessary for under-
standing the software life cycle, the model of the dynamic nature of the
development process, the requirements for transferring technology from
theory to practice and from project to project, and some areas where models
and metrics currently exist. '

—-

TOWARD UNDERSTANDING THE SOFTWARE LIFE CYCLE

Victor R. Basili
University of Maryland

Introduction

There is need for better control in the management of software.
This control can be achieved only by a better understanding of the
software life cycle process in theory and a more effective method of
exposing progress in practice. Understanding assumes models and
measures of the various aspects of the process and the product which
parameterize each of the factors that influences them. It requires
identifying these factors, knowing their bounds, and measuring their
interaction. Visibility assumes the ability to produce certifiable
checkpoints of progress. In many cases, this requires the availa-
bility of data, collected during the development process, that
conforms to the given models and measures.

Current problems arise from the fact that there are too many
parameters affecting the development of software. It is difficult
to isolate all these parameters, and understand their effect and the
relationships and interactions they foster in the development process.
Even those factors that are intuitively recoguizable cannot be defined
or quantified very well. It is almost impossible to find an agreed
upon set of definitions for some of the most basic factors or terms;
e.g., size, specification, etc. We do not have a realistic model of
the life cycle process itself. Most views of the life cycle are in
terms of static phases; e.g., requirements, specification, design,
coding, testing and maintenance. In practice, the life cycle process
is not static butdynamic, iterating through all phases. The phases
define aspects of the development process, but the sequence of phases
does not describe their interaction. When we try to fit the process
to this static model, we are left with a poor understanding of the
dynamics of the process.

Visibility of progress is hard to assess, especially during the
early stages of development. Milestone definition is vague and it is
difficult to verify that the product at any point in time corresponds
to what is expected. This is partly because progress doesn't corre-
spond to the static model and there is not enough solid information
to permit confident assessment of success.

To solve the problems of control, understanding and visibility, ;
we must develop a science of the software life cycle process. We
must develop realistic models that fit the process. We must develop
quantifiable measures that accurately feed back information on progress
and quality. To this end, we must collect data for the development
and validation of models and measures for feedback and visibility of
the process and product.

TR ecrmer -

In what follows, some of the basjic problems with model develop-
ment and data collection will be discussed in more detail. An approach
for building and using realistic models will be given along with its
benefits in the development process. Finally, some promising models
and measures currently in existence will be given.

Problems

The major problem in model development is that there are too
many parameters and factors to consider. There are (1) people-related
factors, e.g., the number of people involved, the level of expertise,
previous experience with the problem, group organization; (2) problem-
related factors, e.g., type of problem (data base manipulation, real
time, etc.), proximity to the state of the art requirements, suscepta-
bility to change, number of external interfaces; (3) process-related
factors, e.g., top down design, use of librarian, programming languages,
reporting mechanisms; (4) product-related factors, e.g., deliverables,
real time requirements, number of modules, size, efficiency tests;
and (5) resource-related factors, e.g., budget, deadlines, response
times, target and development machine systems. We need to understand
the effect and boundaries of each of these factors in theory and then
map them onto the current problem to be solved in practice. We need
to know how to balance various factors and make adjustments.

Understanding these factors, their boundaries and interactions
requires analyzing their effect on a large number of projects. This
requires the collection of the appropriate data and the ability to
transfer this data from project to project across government agencies
and industry, in order to build enough of a data base to isolate
common developments and compare the results. However, there are major
problems in data collection and transfer of information. First we
must know what data to collect before we begin collecting it. It
must be model driven. (Data collection can be very expensive if it
is not done right. It need not be if it is well planned as to what
is wanted and how it is to be processed.) Second, basic to data collec~
tion and information transfer is a standard definition of terms and
taxonomies. Neither of these currently exist. In fact, we do not
agree on such simple definitions as what constitutes source code,
project size and error. It is not even agreed on what is meant by
the life cycle terms, that is, the definitions of the terms given in
the introduction are not standard. When reading the analysis of a
particular project in the literature, one cannot always transfer
that knowledge to another project because it is not always clear what
the original author meant by many of the terms which were involved
and what their values were. Many of the contributing factors are not
explicitly given.

Besides the definition of basic terms, we need taxonomies; that
is, we need to understand the data at various levels of abstraction
for different classification schemes and different environments. At
levels of abstraction, we need to know when to worry about details
and when to see the big picture; e.g., budget factors can be viewed
for the entire project across the entire life cycle, or for some sub-
cycle (such as the design phase or the design, coding and testing
phases), or for some subsystem (such as the design phase of a particular
component) .

-92~

We can categorize a product or subsystem by its type (e.g., data
manipulation, mathematical, real time). This permits the specific
weighting factors for productivity which can be associated with the
type of application. We can classify an environment by its con-
straints (e.g., execution time critical, storage critical, calendar
time critical). Then we can better understand the effects on budget
or development time based upon the specific set of constraints on
the problem.

We are usually interested in collecting data for a specific
purpose. How we classify data dictates the kind of data collected.
For example, there are many ways to classify error data: by cause
(e.g., misunderstanding requirements, misstated specification,
clerical coding error), by time used to fix, by technique used to
find or correct the error, etc. Each of these classifications re-
quires the collection of different data and tells us different things
about the development process itself. In evaluating a technique such
as code reading, we would like to know what class of error it minimized
or eliminated. We would like to know what class of error is most

common to a particular type of software product or particular methodology.

Until we can agree on a standard set of definitions of terms and
a standard set of taxonomies for categorizing data, it will be diffi-
cult to understand and analyze the software development process, to
develop models thav can be parameterized for different environments,
and to gain real control of the management process.

Part of our lack of understanding also stems from a poor model
of the life cycle process itseif. Milestones are often associated
with the completion of a static set of phases. Typically, these
phases are (1) requirements~—an operational description of the user's
needs; (2) specification--the developer's abstraction of the require-
ments giving what is to be done without indicating how; (3) design--
the abstract description of how a system is to work; (4) coding--the
implementation of that design in machine executable form; (5) testing--
the verification that the operating coded system satisfies the opera-
tional requirements; (6) maintenance and modification--the continual
repetition of phases 1 through 5 as the system evolves in time to meet
new organizational needs.

It is clear from available data that the life cycle process is
dynamic in nature. One phase is not completed before another one
begins. Each of the phases overlaps and interacts. Part of the
interaction is due to the natural state of affairs. A requirements
change or flaw,or better understanding of what was meant in an earlier
phase, causes a return to that phase with respect to the particular
subsystem currently being worked on.

Many methodologies involve the interaction of the various phases
of development. For example, the top down development methodology
permits certain parts of the system to be coded before other parts
are designed (Mills, Baker). Methodologies exist that require an

-93-

iterative development of the system by building increasingly larger
subsets of the system until the entire functional capability is
developed (Basili and Turner).

Standard static milestones become meaningless in these envircu-
ments because they tend to be too simplistic a measure of progress.
A milestone should be a measurable checkpoint of progress. It
must be a visible, certifiable, if not quantifiable, measure related
to an individual phase and subsystem with respect to degree of com-
pleteness; i.e., satisfaction of functional goals, bounds on reliability,
"goodness" of the product, etc. The milestone should assure us that
a particular function has been completed through some phase with a
certain reliability and complexity bounds, etc. This permits a more
honest evaluation of progress.

Certifiable milestones are a necessity for successful management.
Milestones can be evaluated by nonquantifiable and quantifiable
techniques. Noanquantifiable evaluation involves reading and review-
ing the product at various stages in development. Quantifiable evalu-~
ation implies the need for measures of the existing product, whether
that product is code or some design or specification or requirement.

A simple measure of lines of code is not enough. It only measures the
final product. This kind of measurement is too late to give any in-
formation about progress when it is really needed and when something

can be done about problems. It does not tell us enough. We want more than
lines of code. We want to know how complex that code is, how

3 reliable it is, how transportable it is, etc. We want to know some-~

thing about the quality of the product at that point in time.

Life cycle management requires an autczated set of tools to help
the manager evaluate progress, evaluate the product, and understand
when and if corrective measures need t.o be made.

Model and Measure Development and Technology Transfer

Models and measures tell us what is supposed to be happening,
what we need to know, and how to recognize it. They drive the actual
data collection process and require the standardization of definitions
and taxonomies. To develop a realistic model, we must better under-
stand the process. To understand the process, we must have a realistic
model. The approach is circular, but we must start somewhere. We
can begin by building a set of '"first-order'" models and measures based
on sound principles and experience. These models and measures then
can be used to generate the collection of data that will help verify
this validity. Based on the data collected, we refine the models and
possibly modify the kinds of data collected. The process is iterative
and continues until we have a set of models and measures that corre-
sponds to reality and tells us what we want to know.

Although the overall approach is slow in yielding a full under-
standing of the entire life cycle process, intermediate models and

measures are still valuable for management in the present environment.
There are several models and measures that already exist and have shown

-94-

tremendous promise of realistically mirroring various aspects of the
life cycle. These models can be used to aid in the management of
current projects and help in the problem of technology transfer.

There are essentially two kinds of technology transfer. The
first is the transfer of theory into practice; the second is the
transfer of knowledge and experience from one project to another.
Both require the collection of data and the use of tools which feed
back and save information on the management and development of the
system. Some data collection must be done manually, but much of it
may be automated. The use of automated tools can help standardize
definitions, aid in the development of taxonomies within the local
environment, and minimize the cost of data collection. These tools
can be used to feed back information to the manager in real time,
permitting him to control the development of the product. Some of
this information can also be of benefit to the programmer, permitting
him to evaluate his own progress or evaluate the complexity or relia-
bility of the design or code he has developed. Information gathered
during the development of one project can be stored in an archival
data base which the organization can use to do future estimationr on
costs, development time, etc. It can be used after the fact to evalu-
ate what went wrong and what went right. Other managers can use it
as an experience base to better understand how different projects
with different parameters were managed. The feedback can be used
to help evaluate some new methodology, or help modify or adapt it
to the local environment. It can be used to convince managers of the
benefits of a different methodology by giving real evidence that it
works.

This archival data base can then be used to validate and refine
existing models and measures with respect to individual environments.
It may also motivate new theories and measures or the collection of
new data; i.e., we believe something went wrong because we didn't
understand the effect of some parameter which we had not measured.

Specific Models and Measures

There currently exists a large number of models and measures of
the software development process. Many of them are referenced in the
working papers of the First Software Life Cycle Management Workshop
(1 SLCMW) and in the proceedings of the Second Software Life Cycle
Management Workshop (2 SLCMW). These range from resource estimates
to complexity measures and we will discuss just a few here to demon-
strate the amount of progress in the area.

1. Resource estimation - Results from computer hardware estima-
tion have been used for the basis of software estimation (Putnam).
The expenditures across time for large-scale projects have been found
to agree closely with the Rayleigh curve

)
E = 2 Kate 3¢

where E is the rate of expenditure at time period t (measured in units

such a month, year), K is the total cost of the project, and a is the
maximum expenditure for any time unit. Further work has been done

on analyzing the equation to add such factors as difficulty of the
product and state of the art of technology. The model has shown to
correspond fairly well to any large-scale model developments. Various
other models have been developed based on experience, data collection,
and continual refinements (Boehm and Wolverton).

2. Effect of various factors - Effect of various factors and
development techniques on the software environment have been measured
(Walston and Felix) yielding a productivity ratio of

L0.91

P =5.2

where P is the total effort in man months and L is in thousands of lines
of source code. A productivity index has been derived which weights
many of the factors to identify divergence from the estimated value P.
These factors include such items as complexity of customer interface,
hardware under concurrent development, previous experience of personnel
with the application, programming language and operational computer,
techniques used such as structured programming, chief programmer teams,
top down development, and complexity of the application and program flow.

3. Reliability models ~ A variety of reliability models have
been developed (Musa, Shooman, Littlewood, Goel), several of which
have shown to be quite effective in practice in estimating the amount
of machine time required to reach a certain predetermined reliability
standard in order to stop testing the system. One concept used is
mean time to failure.

4. Product measures - Several measures of the complexity of a
product have been developed which can be associated with the control
structure (McCabe) or data structure (Myers). Development invariants
in the software product with regard to such factors as effort and length
estimation have been identified (Halstead). Invariants in the behavior
of a product in the software maintenance have also been identified
(Belady and Lehman). A variety of measures, including portability,
reusability and maintainability, have also been developed (McCall).

Tools have been developed that lend themselves to automatic
data collection, visibility and measurement. These include various
requirement analyzers, such as PSL/PSA (Teichroew and Sayani) and
automated Process Design Languages (Caine and Gordon).

Conclusion

It is clear that to manage software we need to better understand
the software life cycle process. To this end, data collection and
analysis are required to build and refine models and measures of the
process and the product. There is a need for identification of in-
fluencing factors, standard definitions and taxonomies, certifiable
milestones and tools that aid in the data collection analysis and
feedback process. Progress has been made in the modeling of many
aspects of the life cycle, but more testing of these models must be

o TRTTOAET T e TR TR T e

done in real environments. The process is slow but necessary if we
are ever to truly understand the software life cycle process.

References

(Mills)
Mills, Harlan D., Software Development, IEEE Transactions on
Software Engineering, Vol. SE-2, No. 4, December 1976, pp. 265-273.

(Baker)
Baker, F. T., Structured Programming in a Production Programming
Eavironment, Vol. SE-1, No. 2, June 1975, pp. 241-252.

(Basili and Turner)
Basili, Victor and Turner, A. J., "Iterative Enhancement: A
Practical Technique for Software Development, IEEE Transactions on
Software Engineering, Vol. 1, December 1975, pp. 390-396.

(1 SLCMW)
Software Phenomenology, Working Papers of the Software Life Cycle
Management Workshop, Airlie House, August 21-22, 1977

(2 SLCMW)
Proceedings of the Second Software Life Cycle Management Workshop,
Atlanta, Georgia, August 1978, IEEE Society Publication.

(Putnam)
Putnam, Lawrence H., A General Empirical Solution to the Macro
Software Sizing and Estimating Problem, IEEE Transactions on
Software Engineering, Vol. SE-4, No. 4, July 1978, pp. 345-361.

(Boehm and Wolverton)
Boehm, B. W. and Wolverton, R. W., Software Cost Modeling: Some
Lessons Learned, Proceedings of the Second Software Life Cycle
Management Workshop, Atlanta, Georgia, August 1978, IEEE Society
Publication.

(Walston and Felix)
Walston, C. E. and Felix, C. P., A Method of Programming Measure-
ment and Estimation, IBM Systems Journal, No. 1, 1977

(Musa)
Musa, J. D., A Theory of Software Reliability and Its Application,
IEEE Transactions on Software Engineering, Vol. SE-1, No. 3,
pp. 312-327, September 1975.

(Shooman)
Shooman, Martin L., Structural Models for Software Reliability
Prediction, Proceeding of the 2nd International Conference on
Software Engineering, October 1976, San Francisco, California,
IEEE Computer Society, New York

(Littlewood)
Littlewood, Bev, Validation of A Software Reliability Model,
Proceedings of the Secoand Software Life Cycle Management
Workshop, Atlanta, Georgia, August 1978, IEEE Society Publication.

(Goel)
Goel, Amrit L., A Software Error Detection Model with Applications,
Proceedings of the Second Software Life Cycle Management Work-
shop, Atlanta, Georgia, August 1978, IEEE Society Publication.

(McCabe)
McCabe, Thomas J., A Complexity Measure, IEEE Transactions on
Software Engineering, Vol. SE-2, No. 4, December 1976, pp. 308-320

(Myers)
Myers, G. J., Reliable Software Through Composite Design,
Petrocelli/Charter, 1975

(Halstead)
Halstead, M, Elements of Software Science, Elsevier Computer
Science Library, 1977

(Belady and Lehman)
Belady, L. A. and Lehman, M. M., A Model of Large Program
Development, IBM Systems Journal, No. 3, 1976, pp. 225-251.

(McCall)
McCall, James A, The Utility of Software Quality Metrics in
Large~Scale Software System Developments, Proceedings of the
Second Software Life Cycle Management Workshop, Atlanta, Georgia,
August 1978, IEEE Society Publicationm.

(Teichroew and Sayani)
Teichroew, D. and Sayani, H., Automation of System Building,
Datamation, pp. 25-30, August 15, 1971

(Caine and Gordon)

Caine, S. H. and Gordon, E. X., PDL: A Tool for Software Design,
Proceedings 1975 National Computer Conference, pp. 271-276.

~98-

""M—n

Contingency Theory Approach to Systems
Life Cycle Management

J. David Naumann
Gordon B. Davis

University of Minnesota

Application of formal life-cycle methodology in an organizational
response to an information-decision problem, especially the reduction of
uncertainty about the outcome of the development process. A single life-
cycle methodology is inappropriate because the level of uncertainty varies
as a function of several contingencies.

This paper described contingencies which determine the level of
uncertainty, described a continuum of responses to level of uncertainty,
and discussed the application and testing of the contingencies theory.
Contingencies include project size, degree of structuredness, user-task
comprehension, and developer-task proficiency.

-99~

THE CONTINGENCY THEORY APPROACH TO SYSTEM LIFE CYCLE MANAGEMENT
J. David Naumann and Gordon B. Davis

University of Minnesota
College of Business Administration
Minneapolis, Minnesota

Application of formal life-cycle methodology is an organizational
response to an information~decision problem, specifically the reduction
of uncertainty about the outcomes of the development process. A single
life-cycle method is not appropriate because the level of uncertainty
varies as a function of a number of contingencies. This paper describes
contingencies which determine the level of uncertainty, describes a !
continuum of responses to level of uncertainty, and discusses the appli-
cation and testing of the contingency theory. Contingencies include
project size, degree of structuredness, user-task comprehension, and
developer~-task proficiency.

The system development life-cycle is the central concept in currently-
used methods of managing and controlling the determination of information
requirements and designing and implementing processing systems to meet
those requirements. When organizations specify the use of formal life
cycle~-based methods for all application developments, the results are mixed.
A single life-cycle method is not appropriate for all cases because appli-
cations differ in the certainty with which requirements can be established.

Introduction

Information systems developers who rely upon formal life-cycle develop-
ment methodologies are not universally successful; developers who do not
apply life cycle methodologies do not always fail. Formal life~cycle manage-
ment procedures, rigorously adhered to, provide a high degree of assurance of
success for large, conventional developments where users and developers share
understanding of the results to be produced. As systems under development
move away from the routine, however, uncertainty about the characteristics
of the end result increases. Information requirements determination and
specification becomes more difficult, costly, lengthy, and unsatisfying to
users and developers alike.

Concepts such as recursive life cycle1 and prototype systems? are
receiving increasing attention as suggested solutions to the problems of
information requirements determination. Implicit in the advocacy and accep-
tance of these concepts is an understanding that the development and applica-
tion of increasingly rigid rules and programs for requirements determination
and specification can be counterproductive. Like the formal life-cycle
methodology, however, an innovative concept is not a panacea. Different
methods may be needed for different systems development projects.

A contingency theory identifies alternative actions and presents factors
to use in selecting the optimal alternative. For example, McFarlan3 proposes
a contingency theory for development project management. He identifies pro-
ject size, degree of structuredness, and degree of company-relative technology
as factors which determine the best project planning and control tools.

~100-

Uncertainty has been identified by Galbraith" as a major factor in
determining the optimal organization structure. The difference between
the amount of information necessary to perform a task and the amount of
information possessed is a measure of task uncertainty; organizations
respond by choosing from a set of four organizational strategies to deal
with the level of uncertainty.

The information requirements determination and specification problem
is one of uncertainty: the success of an information system development
effort depends upon the clear, complete, unambiguous, and accepted speci-
fication of need. The formal life-cycle development methodology response
to this need is to require formally approved documentation as an agreement
between users and developers before design and implementation. Ideally,
this approach reduces uncertainty about the outcome of the development
process to a mutually acceptable level. Since information requirements
uncertainty varies from application to application, the "rules and programs"
approach is incapable of producing a satisfactory result over the entire
range of information systems development projects.

Contingencies Analysis

In the determination of information requirements for an information
system application uncertainty refers to knowledge of the '"real' information
needs. Among the development contingencies which determine information
requirements uncertainty are project size, degree of structuredness, user-
task comprehension, and developer-task proficiency. A systems development
project has some combination of these attributes. The combination of con-
tingencies defines the level of uncertainty which must be resolved in a
system development effort.

Project Size

The project size contingency has three key characteristics: duration,
number of people involved, and total dollar amount. These characteristics
are usually, but not necessarily, collinear. That is, a high cost project
usually requires many people over an extended time period. Project size is
not a good measure of the value of a systems development project, but it is
correlated with the degree of uncertainty of the results of the development
process.

The number of people involved characteristic refers to both users and
system developers. A large project necessarily involves many developers, an
extended duration, or both. Uncertainty is associated with communication and
coordination in large development projects. A project with a large number of
users also contributes to uncertainty. Multiple users or even multiple user
organizations add to the information which must be gathered and communicated
to determine system requirements.

Degree of Structuredness

One dimension of the Gorry and Scott Morton® framework for information
systems is that of the relative structuredness of the decisions to be supported
by an information system. For information systems information requirements

-101-

T P

determination, a high degree of structuredness means that a general model
exists which can be applied to the given organizational setting. A low
degree of structuredness means that there is no routine procedure for dealing
with the problem, there is ambiguity in the problem definition and uncer-
tainty as to the criterion for evaluating solutions. Uncertainty about the
decisions to be supported is an important factor in uncertainty about the
outcome of the systems development process.

User Task Comprehension

Related to but distinct from structuredness is the comprehension that
the user or users have of the task to be performed by the information system.
User task comprehension affects the selection strategy and development project
success in much the same way as degree of structuredness. If the users have
a low degree of understanding of the task for which the system is intended,
whether or not a general model of a problem exists, less is certain about
the information requirements (and the users' acceptance of the results of the
development process).

Developer Task Proficiency

Developer task proficiency is a measure of the specific training and
experience brought to the project by the development staff: project manager,
liaison staff, systems analysts, systems designers, programmers, etc. It is
not a measure of ability or potential: rather it is a measure of directly
applicable experience. This contingency indicates the degree of uncertainty
with which the developer will be able to obtain and document the requirements
(and also proceed with the remainder of the development process).

CONTINGENCY ANALYSIS
CONTINGENCY CONTRIBUTION
TO
TYPE DEGREE UNCERTAINTY
Project Large +)
Size Small -
Degree of Structured -

. LEVEL OF
Structured:- Unstructured + ? UNCERTAINTY
ness
User Task Complete -

Comprehension Slight +

Developer—~ High -

Task Profi- Low +

ciency J
Figure 1

E INFORMATION REQUIREMENTS DETERMINATION CONTINGENCY ANALYSIS

i
k -102-
i

T ——— . : - n‘.‘!l T

Uncertainty-Reducing Strategies

The response to uncertainty produced by the characteristics of a

] systems development task, the using organization, and the developer organi-
zation (i.e., the contingencies) has frequently been unidimensional. Under
the traditional life-cycle approach, formal procedures, reviews, committees,
check points, etc., are used for all projects.6 There has been no recogni-
tion of the degree of uncertainty from the contingencies. An alternative
approach is to:)

1. Analyze contingencies and determine the relative uncertainty,

2. Select an uncertainty reducing strategy appropriate to the level
of uncertainty,

3. Apply the information requirements determination methodology
corresponding to the appropriate uncertainty reducing strategy.

A low level of uncertainty clearly suggests that a simple strategy will
suffice to discover information requirements and produce system specifica-
tions. A high level of uncertainty, in contrast, suggests that the
appropriate strategy will serve to define and communicate information re-
quirements to users and developers in such a way that the object system
products can be specified and agreed to.

The strategies range from acceptance of information re .uirements as
specified, through linear discovery and recursive discovery, to experimental
discovery of information requirements. Corresponding methodologies are
suggested as typical of the discovery strategies and widely understood and
applicable.

Accept as Specified

If information requirements are known and agreed upon, then the proper
strategy is to accept the user's statement of need as adequate specifica-
tion for implementation. The method is therefore to have no information
requirements cycle. Examples are file conversions, reports from existing
files or databases and small single-user models. These examples have in
common: small size, high degree of structure, users who understand what
the systems are to do and how the implementation will function, and must
have developers with experience in similar systems. Explicit recognition
of the need for the "accept as specified" strategy will lead to greater
responsiveness and an increase in development organization efficiency.

] Formal rules and procedures designed to assure mutual understanding and accep-
tance of system specifications may be unnecessary and unwieldy at this level.

Linear Discovery

If information requirements can be determined through a straight-forward
process of interviewing, fact gathering, and documentation, the proper
strategy 1s to proceed step~by-step to system specification. The method is
therefore a linear application of the life cycle. Examples are transaction
level systems, single function accounting systems such as accounts receivable
or payable, and minor modifications to existing information systems.

-103-

Information requirements for large systems which are highly structured
and where user-task comprehension and developer-task proficiency are high
may be effectively determined by the linear discover process. However,
information requirements for a relatively small system such as a decision
model may not be determinable by this method if the decisions to be supported
are relatively unstructured, or if the user does not comprehend the task,
or if the developers have not previously produced such a system. Linear
application of the life-cycle model is an effective strategy under the
appropriate combination of contingencies.

Recursive Discovery

The linear discovery strategy may not produce correct or complete or
acceptable specifications of information system requirements. The tradi-
tional life-cycle approach extends to recursion for such systems. One or
more discovery tasks are iterated until a complete, consistent specifica-
tion is determined and accepted. Examples are large, multiple-user systems,
systems which are new to the user or developer organization, and systems
which support the relatively unstructured decisions of tactical and strategic
management. This approach assumes that a correct specification of require~
ments can be made given sufficient time and effort. Where the contingencies
indicate that is a valid assumption, the recursive discovery strategy is
appropriate and effective.

Experimental Discovery

A high level of uncertainty may be indicated by a combination of the
contingencies. Repeated iterations of discovery may not successfully produce
adequate specifications of information requirements in such cases. The life
cycle method, whether linear or recursive, is inappropriate when uncertainty
is high. The strategy of experimental discovery as realized in the proto-
type design method, reduces uncertainty by producing successive approxima-
tions.

Users and developers can easily see what is wrong with an implementation
even though they are unable to completely specify its information require-
ments.’ The higher costs associated with prototype implementation are
justified by the provisions for interactive development and discovery.
Examples are decision support systems for upper management, interactive fore-
casting models, and small (or large) systems to be implemented for many
different users. Conscious selection of the eiperimental discovery strategy
may be the only effective approach to information requirements determination
when the level of uncertainty is high.

INFORMATION REQUIREMENTS DETERMINATION
Uncertainty Methodology
Reducing Strategy
low
U Accept information No requirements
N requirements as specified determination
g Linear information Life cycle applied
R requirements discovery linearly
X Recursive information Life cycle applied
I requirements discovery recursively
? Experimental information Prototyne
requirements discovery development
higg
Figure 2

INFORMATION SYSTEMS DEVELOPMENT STRATEGY AND METHODOLOGY

Conclusion

A range of information requirements determination strategies is needed.
Such strategies match the level of uncertainty about the system specifica-
tion which is to result. The appropriate strategy is determined by the
extant contingencies.

Inappropriate methodology selection and anplication leads to either
of two problems: insufficient capacity to reduce uncertainty or more
capacity than needed. Where a strategy does not provide sufficient capacity
to reduce uncertainty, several possible consequences may result. Changes
during implementation or after installation are often required. User dis-
satisfaction with the object system is a negative result even though modifi-
cations are not made. In the extreme case, information requirements must be
re-analyzed and specified.

The problems caused by application of a higher capacity methodology
than needed are less immediately apparent. Higher development costs and
longer development duration reduce the efficiency of the development organi-
zation and justify the charge of unresponsiveness.

Uncertainty reducing strategies and a wide range of information require-
ments determination methodologies are being applied in industry and govern-
ment. A program of empirical research is needed to develop and refine measures
of uncertainty indicated by the contingencies to appropriately characterize
specific methodologies as specific levels of uncertainty reducing strategies,
and to associate systems development outcomes with the strategies applied.

-105-

-

The contingency theory approach is applicable to another aspect of
information systems development which might be labeled the uncertainty
tolerance level. Variables such as the impact of systems failure and
the cost of modification and enhancement imply that uncertainty need not
be reduced to a common level for all systems, but that an appropriate
level of uncertainty is contingent upon such factors as number of users,
system distribution, etc.

Research leading to more precise operational definition of the con-
tingencies and their effects will lead to more efficient and effective
information systems development.

References

1. J. L. Podolsky, "Horace Builds a Cycle," Datamation, November, 1977,
page 162, .

2. L. Bally, J. Britton, and K. H. Wagner, "A Prototype Approach to
Information Systems Design.and Development,' Information Management,
Volume 1, Number 1, November, 1977.

3. F. W. McFarlan, "Effective EDP Project Management," in Managing the
Data Resource Function (R. Nolan, Ed.), West Publishing Company,
St. Paul, 1974.

4. J. Galbraith, Designing Complex Organizations, Addison-Wesley,
Reading, Mass., 1973.

5. G. A. Gorry and M. S. Scott Morton, "A Framework for Management
Information Systems," Sloan Management Review, Volume 13, Number 1,
(Fall, 1971), pages 55-70.

6. G. B. Davis, Management Information Systems: Conceptual Foundations,
Structures, and Development, McGraw-Hill, New York, 1974.

7. C. Alexander, Notes on the Synthesis of Form, Harvard University Press,
Cambridge, Mass., 1964,

OPERATING SYSTEMS SECURITY

LTC Robert P. Campbell
DAMI-AM

OPERATING SYSTEMS SECURITY

SESSION CHAIRPERSON: LTC Robert P. Campbell
DAMI-AM

SESSION SUMMARY

This session featured presentation of two papers which briefly
summarized the character and scope of the software security problem, dis-
cussed approaches being used to improve the security of general purpose
operating systems and described in detail current efforts on development
of the Department of Defense Kernelized Security Operating System (KSOS).
The KSQOS presentation detailed the design methodology and security assurance
methods used, the actual design, with emphasis on the interfaces available
to various classes of users; and the potential application for KSOS.

SOFTWARE SECURITY
LTC Robert P. Campbell
OACSI, HQDA

The prnblems of ensuring the security of software and the operational
systems wh.ch they support have been with us, naggingly, for over a decade.
A basic corflict can be found between the national level security policies
for the promection of classified information and privacy data, which are
not enforceable within today's automation technology, and operational
necessity, pressuring for full exploitation of state-of-the-art technology
(Figure 1). These factors, considered with technology, form a triumvirate
within which those with security responsibilities must achieve an
equilibrium, a balance, a degree of risk that is acceptable within the
context of the environment. The policies form the base line. They are
generally fixed and immutable or at best can only be more precisely defined
and thus refined. On the other hand, there are requirements, born of
operational necessity, driving us to employ all available technology in
satisfaction of these needs. The third element, technology, responds to
both policy and operational requirements. A change in one of these areas
influences the other two.

Within this environment, the price of security is very high. Because
technology has not been able to respond to security policy needs, sizeable
amounts of resources have been allocated to support information
segregation, dedicated computers, large numbers of security clearances,
and burdensome physical precautions and procedures. There are other
nondirect costs, in terms of inconvenience, lack of capability, or lost
opportunity that are never really quantified but which clearly exist. The
point is that large quantities of money and other resources are being put
into day-to-day operational procedures without materially influencing the
problem. These are sunk cost which are lost, never to be retrieved, and
which drastically reduce the return on our technological investment.

These sunk costs are increasing. It was estimated that, 10 years ago,
the commercial world found a premium of 3 to 5 percent for security to be
too high. Today, there is a belief that, with the increased emphasis being
given to security and privacy, there is a willingness to raise this premium
to 10 to 15 percent, a penalty that is bound to impact broadly upon overall
operations. It is evident that the time has come to directly apply some of
our technological drive to satisfaction of these privacy and security
requirements.

There is an inherent compatibility between our quest for reliable
software and that for secure software. Reliability seeks assurance that
the implementation does what it is supposed to do, while security seeks
assurance that the implementation not only does what it is supposed to do--
but no more or no less. While reliable operations are not necessarily

secure, secure operations always have the characteristic of reliability
because security requires a high degree of stability and predictability,
both of which are reliability prerequisites. There is growing awareness
that the time has come to invest in security technology in order to offset
the increasing burden of operational security costs. Progress needs to be
made.

Shifting now to the most basic of our software security problems, that
of the operating system itself, there are basically three strategies that
can be used to address security vulnerabilities: the patch method, the
security kernel method, and that of designing a secure operating system 1
from scratch (Figure 2). The patch method has been characterized by such "
attempts as by IBM to improve its 360/370 security with VS2/Rel 3, the CDC) -
6600 with NOS BE, the Honeywell GCOS, the UNIVAC Exec VIII, and so on. The
conclusion, quickly learned, is that security by patch does not work.
There are always other holes, and often the patch itself will introduce
more flaws. The second method features the security kernel, wherein the
trusted processes are isolated in a special module that checks all accesses
to the system. This method shows great promise for short-term improvement
in security state-of-the-art. There are security kernels being developed -
for the general purpose operating systems of the PDP-11 (the "KSOS 11n),
tnhe Honeywell Level 6 (KSOS 6), and the IBM VM 370 (KVM 370). Some of these
implementations will reach operational capability before the end of FY 79.
The third strategy, that of designing a secure operating system from
scratch, offers the best potential for long term solution although it will %
not be without problems. Anytime you introduce a totally new operating
system, you will not have the support base, the community of users or a
broad inventory of applications software readily available for use. But
DOD is pressing ahead with the Provably Secure Operating System, or PS0S,
looking for a prototype by 1980, with the first formal, mathematically
verifiable version possibly available by late 1982. The National Security
Agency, Air Force Systems Command, SRI, and MITRE are currently
collaborating on the design effort.

With the promise being shown by the security kernel approach, we
believe that we are on the brink of significant technical accomplishment.
To maximize the effectiveness of these efforts, DOD has established a
Computer Security Technical Consortium (Figure 3) in order to provide (1) a
coordination mechanism for ongoing research in the computer security
field, (2) a focus for technical aspects of the certification and im- 1
plementation of multilevel secure systems, and (3) technical leadership
for the transfer of state-of-the-art computer security technology to
industry.

The third area of this initiative involves an industry relations
program which will transfer this technology to industry and encourage
industry, at its own expense, to develop and implement secure systems based
upon this technology. To further this effort, DOD has asked the military
services for funding to equally support nominal contracts with computer
manufacturers to obtain information on the integrity mechanisms they are

using in their new operating systems. DOD has also requested technical
support in the form of knowledgeable individuals to act as Contracting
Officers Technical Representative (COTR) for each of the industry
| contracts. These individuals must be government employees and will be
expected to devote approximately 20 percent of their normal duty to this
effort. 1 believe the Army's need for multilevel secure systems to be as
great, if not greater, than that of any of the services, so I am currently
trying to line up Army support for this effort.

The remainder of this session will focus on the Kernelized Secure
Operating System, or KSOS, as it is currently entitled (Figure 4). The
KSOS had its beginnings in research that started almost 10 years ago when
concerns for the insecurity of sensitive computer systems led to the use of
"tiger teams”™ to attempt penetration through their operating systems.
These teams succeeded in breaking every commercially available operating
system with ease and impunity. Concern over the serious vulnerabilities
uncovered led to a study in 1972 by the Air Force Electronic Systems
Division of the requirements for a secure system. The results of that
study form the basis of most of our efforts in developing secure systems.
The most important concept to come out of that study is that of the
reference monitor (Figure 5). The reference monitor mediates the access of
subjects to objects. It determines whether or not access is to be granted.
All security relevant decisionmaking code is collected in the security
kernel. The reference monitor concept requires that this module be
complete (i.e., that all subject/object accesses be checked by the kernel),
that it be isolated (i.e., that the kernel code be protected from
modification or interference by any other code in the system), and that it
be verifiable (i.e., perform only that which it was intended and no more).
Verification is a very difficult area. and may run the gamut from mere
performance audit to formal mathematical proof of correction. For security
applications, we are striving for formal provability. Significant
progress is being made in this area. Between 1973-1975, the Air Force ESD
and MITRE developed a security kernel for the PDP 11/45 and then applied
those concepts to the design of the Multiplexed Information and Computing
Service (MULTICS) operating system for the Honeywell 6000 system. About
this same time, Dr. Jerry Popek of UCLA was building a secure Kernel
prototype for the PDP 11/45 based upon a virtual machine monitor system and
emphasizing the kernel verification process. Also during the early 1970's,
the Bell Labs designed and implemented the UNIX operating system for the
PDP 11. The UNIX, designed to provide effective support to interactive
users, has proven to be highly efficient and reliable. Its operating
system structure, written in the high order language "C" 1is simple and
uncomplicated. Both UCLA and MITRE have interfaced their prototypes with
UNIX.

In 1977, DOD initiated an effort to move beyond the prototype stage,
to design and implement a production quality version of a certifiably
secure operating system which emulates the Bell Lab's UNIX. This program,
known at that time as the "DOD Secure UNIX," was two-phased (Figure 6).
The Design Phase, with a competitive PFP issued in April 1977, saw twc

contractors (TRW and Ford Aerospace and Communications Corporation)
selected in August 1977 to develop detailed systems designs. The Design
Phase was completed in April of 1978. The Implementation Phase commenced
in May 1978 with the award of contract to Ford Aerospace and Communications
Corporation to build the production version, fully supported, for fielding
1. August 1979.

KSOS will be a complete rewrite of the core of the UNIX operating
system (Figure 7). Thus, there will be no Bell Lab's/Western Electric code
in the KSOS and no need to pay licensing fees to Western Electric. Through
provided emulation, however, KSOS will be compatible with the UNIX
operating system and existing UNIX applications.

Because of the simplicity and straightforward design of UNIX, extend-
ing the KSOS to run on other hardware architectures should not be a
difficult task. The UNIX itself currently runs on PDP 11/40, 11/45, 11/70,
and also on Interdata 8/32. UNIX wminicomputer applications are also
frontending IBM 360/370's, UNIVAC, and Honeywell mainframes, testifying to
the appeal and acceptability of UNIX. Al of these factors favor the DOD
initiative. In addition to DEC and Honeywell implementations of KSOS, DOD
is aware of other serious interests in implementing KSOS-like
architectures. There 1is no reason to believe that other major
manufacturers will not do likewise. The KSO0S, about to join the DOD
inventory of computer tools, will provide a significant capability to
better respond to national level security policy and, importantly, will be
demonstrated proof to industry that secure systems are possible.

I %14

SINFWIH INOHY AJ110d

A90710NHIAL

«J1ONVTYL TWNYAL3, 3HL
ALTIYNJ3S NOTLYWOLNY

-112-

z ‘814 1

S0Sd !
N9ISIT TUNIOINO ® |

048 WM

9 SOSA

IT SOSA
TINYIX ALIHND3S @

-113-

5029 0009 SIH
(39 SON/3403S) 0099 20
¢ 134/2SA WA

Hilvd @

S31931VYLS WALSAS ONI1VY3d0 NIIS

€ °*814

AJLSNANT 0L A9010NHI3L 40
434SNVYL 404 dIHSY3AYIT TWIINHI3L JAIAOHd 0L e

SW3LSAS
NIIS T3ATTLINW 40 NOTLVINIWITWI ANV
NOTLVII41143) 40 S1334SY TYIINHIIL JHL INI43d 0L @

HJYY3SY ONIOINOG JLYNICQYO0D 0L @

WNTLYOSNOD T¥IINHIAL
ALTIYNIIS ¥3LNdWOI Q0Q

y 814

QILYILINT 140443 NOISYIA NOILINAO¥d .XINN WNIIS. (0T
SIdALOLO¥d XINN 3YNIIS N1934 JLIW QN 1N

0340713A30 XINN SEv1 113d

Gh/TT d0d - YOLINOW INIHOVW TYRLYIA/TINYIN ALTYNIIS VIR
SIdALOLO¥d TINYIN ALIYND3S Gh/TT dld FLIW/QS3

143INOD YOLINOW JONTYI4IY - AANLS TSI/3¥SN

SNOILVYL3INId .WY3L ¥391L.

WILSAS ONILVYI0 FNIIS (3Z113INY]
@00 3HL 40 NOILNTOAd

‘L1161
‘9/61
*q/6T-T/61
*GL6T-H/61
*G/6T-¢/61
‘¢L6T

¢/61-8961

-115-

M -

¢ 814

YOLINOW
S173rd - —
A0 EW\EREEEL)

1d3IN0OD YOLINOW JINTYIJHY

(3I14143A ©
qiLviosi o
3131dW0) ©

S123rdns

-116-

abebbidusat,

9 814

3131dW0I NOILVINIWIWI :6/6T 9NV
(3Q4vMY LIVYINOD “8/6T AWM
ISVHd NOILVINIWITdWI o©

3131dW03 IS¥Hd N9ISIA :8/6T ydY
(304YMY SLIVYINOD N9IS3T ://6T 9ny
ddd JATLILIWOD *//6T ddY

JSYHd N91S3Q ©

(SOSX) WALSAS 9NILYY3dO NIIS IZI113INYIN doa

L *81d

SINIWNOYIANI XINA ONIISIX3 HLIM ALITIGILVAWOD ©

-118-

SOSY NI 3003 218123713 NY3LSIM ON ©

40D XINA 40 ILIYMIY 31TTdW0d ©

The Department of Defense

Kernelized Secure Operating System (KSO0S)

E. J. McCauley

Ford Aerospace and Communications Corporation

The Department of Defense Kernelized Secure Operating System
(KS0S) is intended to be a provably secure operating system for larger
minicomputers. KSOS is divided into three parts:

1. The Security Kernel - a minimally complete primitive operating
system providing the basic security enforcement of the system.

2, The UNIX** Emulator - which transforms the interface provided
by the Kernel into one similar to that provided by UNIX.
Existing UNIX applications will run unmodified on KSOS.

3. The Non-Kernel System Software (also called Non-Kernel Security-
Related Software) - which is the collection of software needed
to operate, maintain, and administer a KSOS system.

The session dealt with three major topics. First, the design
methodology and security assurance methods used on the KSOS project have
been briefly discussed. These methods blend well-accepted software design
procedures with new ideas from the research community. KSOS will be one
of the first production projects to routinely employ formal, mathematical
specifications in its design process. There were also proofs that the
design satisfies the security requirements independent of any mechaniza-
tion of that design. The second topic was the design of KSOS. Here, the
emphasis was on the interfaces available to various classes of KSOS users.
It has been a design goal that the KSOS Kernel could be used for applica-
tions other than UNIX. Thus, the features that realize this goal were
emphasized. The final topic was the potential applications for KSOS.
Particular emphasis was placed on applications in which the full generality
of the UNIX Emulator is not required, such as the Military Message Process-
ing equipment.

-

T T B e e .

The Department of Defense Kernelized Secure Operating System (KSOS) *
E.J. McCauley

Ford Aerospace and Communications Corporation, Palo Alto, CA

ABSTRACT

The Department of Defense Kernelized Secure Operating System (KSOS) 1is
intended to be a provably secure operating system for larger minicom—-
puters. KSOS will emulate the UNIX** operating system. This paper
deals with three major topics. First, the design methodology and
security assurance methods used on the KSOS project will be briefly
discussed. These methods blend well-accepted software design pro-
cedures with new ideas from the research community. KSOS 1is one of
the first production projects to routinely employ formal, mathematical
specifications in its design process. There will also be proofs that
the design satisfies the security requirements independent of any
mechanization of that design. The second topic is the design of KSOS.
Here the emphasis will be on the interfaces available to various
classes of KSOS users. It has been a design goal that the KSOS Kernel
could be used for applications other than UNIX emulation. Thus, the
features that realize this goal will be emphasized. The final topic
will be the potential applications for KSOS. Particular emphasis will
be placed on the effective utilization of the system’s features in
supporting multi-level applications.

l. INTRODUCTION

The purpose of the Department of Defense Kernelized Secure Operating System
(KS0S, formerly called Secure UNIX) is to provide a provably secure operating
system for larger minicomputers. KSOS will provide a system call interface
closely compatible with the UNIX operating system. The initial implementation
of KSOS will be on a Digital Equipment Corp. PDP-11/70 computer system. A
group from Honeywell 1is also proceeding with an implementation for a modified
version of the Honeywell Level 6 computer system.

KSOS will be capable of handling information at various security levels (a
security level 1is a combination of a hierarchically ordered classification
category, like SECRET or TOP SECRET, and a, possibly null, set of compartments,
like NOFORN or specialized need-to-know compartments). The goal of the system
is to provide strong assurances that it is impossible for an unprivileged user
to cause an information compromise.

* The work described in this paper was performed under ARPA Order 3319, Con-

tract MDA903-77-C-0333 administered by the Defense Supply Service-
Washington. Various DoD Agencies are funding the work. The conclusions
presented are those of the author and are not necessarily those of the
Government or Ford Aerospace.

** UNIX and PWB/UNIX are trademarks of the Bell System

Version l.4

-120-

At 1its outer interface, KSOS will appear to be closely similar to the UNIX
operating system [Ritchie 74]. The only changes are to tighten the security
checking on some of the operating system calls, and to add several new calls
which individual UNIX sites had previously added to their systems. Existing
applications programs written for UNIX will run without modification or recompi-
lation on KSOS, providing that they do not violate the security rules of the
system. At last count there were several hundred application programs for UNIX,
ranging from simple utilities through sophisticated compilers, data management
systems, text processing systems, and powerful editors. (This paper was com-
pletely prepared on a UNIX system, as is all documentation for the KSOS pro-
ject.) All of these programs should run on KSOS without modification.

This UNIX-like interface is provided by a software component called the
UNIX Emulatore. The UNIX Emulator transforms the user’s UNIX operating system
calls into (sequences of) calls to the Security Kernel. The Security Kernel 1is
the heart of the system. The Kernel implements the reference monitor concept
[Bell and LaPadula 73). Briefly, through a combination of hardware and software
checking, the Kernel monitors every access attempt by each user process. The
Kernel will be shown to make the correct decision on whether to permit or deny
the access attempt.

One important distinguishing characteristic of KSOS over the prototypes
which have preceded it [Kampe et al. 77] [MITRE 77] is that it contains a full
range of support software. Included in this "Non-Kernel System Software' (also
called Non-Kernel Security-Related Software) are components which support the
day-to-day operational functions of the system: secure spooling of line printer
output, portions of the interface to a packet-switched computer network, etc.
Also included are components for the continuing maintenance of the system such
as consistency checks of the file system, and system generation support.
Finally, there are components to support the administration of the system, such
as adding and deleting users, changing the security levels that a given user may
access, and other functions.

The schedule for KSOS calls for its delivery in the fall of 1979 after the
conclusion of a full series of testing. The KSOS development contract specifies
that the system shall have a full MIL SPEC documentation package 1in accordance
with MIL-STD-483, =490, and -1521A. Detailed documentation on the basic archi-
tecture and interfaces is presently available in the form of B5 Specifications.
The Kernel B5 Specifications [Kernel 78] include formal, mathematical descrip-
tions of precisely what each Kernel call does. In addition technical reports
have been delivered detailing our plans for verification of the system’s secu-
rity properties (Verif 78], for the tools and techniques to be used in implemen-
tation [Impl 78}, and for the long term maintenance and support of the system
(Maint 78].

2. THE DESIGN METHODOLOGY

It is generally accepted that security cannot be added on to a system.
Rather, the security features of a system must be designed in from the begin-
ning. In the case of KSOS this is accomplished by adding mathematical formalism
to the system design and implementation process. The design methodology fol-
lowed on KSOS is called HDM (Hierarchical Design Methodology) and was developed

Version 1.4
-121-

O T Y

at SRI International [Robinson et al. 77) in an attempt to improve the rigor of
the design process. HDM is much more evolutionary than revolutionary. It takes
the proven techniques for system design and implementation and adds to them the
mathematical formalism needed to make precise statements about the behavior of
the system. HDM also incorporates verification that successive stages in the
design process are consistent with the earlier stages. Figure 1 shows HDM
versus the classical software development process as defined by MIL-STD-483,
~490 and -1521A. (All the services have software procurement procedures that
are similar to those of MIL-STD-483, -490, but there are slight differences in
terminology.)

Design Stage HDM "Classical”

Requirements Definition formal mathematical broad statement of
model of security security requirements

Functional Allocation hierarchical decom- decomposition into
position of system functions performed
into layers of virtual by each CPCI
machines

Functional Specification formal mathematical BS Specifications:
specification in a interfaces, input,
non-procedural processing and output
language (SPECIAL) for each function

Detailed Design data representations, Structured English,
abstract programs flow charts, etc.

Implementation verifiable language language chosen for

efficiency, maintain-
ability, compatibility

etc.

Requirements Compliance formal proofs: manual reviews:
design vs security Functional Config.
model Audit
code vs design Physical Config.

Audit

Figure 1. HDM vs Classical Design Methods

For KSOS, we have used a mixture of HDM and the classical methodology. Somewhat
to our surprise the steps of HDM have been able to be incorporated into the
clagsical methodology without great dislocation for either methodology.

KSOS will have two distinct classes of proofs made about its security pro-
perties. First, the design will be proven to be secure. This proof is indepen-
dent of any implementation. It consists of proving a relatively large number
(we estimate about 1000) of inequalities derived from the design. These

Version 1.4
-122-

inequalities relate the security levels of inputs for a particular function to
the security levels of the outputs of that function. For a system to be secure
each function must satisfy two properties:

a. the simple security property: a process may only read data at or below its
security level

b. the security *-property (pronounced "star property'"): a process may only
write data at or above its level

The generation and proof of the theorems must be automated because there are so
many of them. Fortunately, they are nearly all trivial, hence automated theorem
generators and provers can be used. Presently, we have been successful at
automatically generating and proving the theorems for a fragment of the design.
Current efforts are underway in the area of speeding up the proof processing
sufficiently to handle the anticipated number of theorems.

The second class of proofs about the system is that the code realizes the
design. These proofs follow the methods first proposed by Hoare [Hoare 69],
(Hoare 72]. They consist of showing that given a precise definition of the pro-
gramming language and a set of initial assertions (the EXCEPTIONS clause from
the formal specifications in SPECIAL), the program exits with the system in the
"state" described by the EFFECTS clause of its specification. Full proofs of
all the code in even a system as small as the KSOS Kermnel are presently beyond
the state of the art. We plan to do representativ.: proofs of modules known to
be both important to the overall security of the system, and whose proofs appear
to be tractable.

Our experience with the design methodology has been favorable. The rigor
of doing formal specifications from the very beginning of the project has been
extremely valuable. Inelegant solutions to problems show up very early. A
kludge in formal specifications is very, very obvious.

3. KSOS DESIGN

This discussion will be a bottom—up presentation. First, the Kernel will
be discussed. The emphasis will be on the more interesting aspects of the Ker-
nel interface, and how they could be employed for applications other than the
emulation of UNIX. The UNIX Emulator will be discussed next. This will be
rather brief, and will again emphasize the more novel aspects of the Emulator.
The discussion of the Emulator will not present very much on UNIX per se.
Finally, the Non-~Kernel System Software will be discussed.

Central t« the KSOS design is the notion of processes. Loosely, a process
is a program 1in execution. In KSOS processes are comprised of two parts: a
user mode portion and a supervisor mode portion. In emulating UNIX, the user
mode portion is a normal UNIX application program, and the supervisor portion is
the UNIX Emulator. The PDP-11/70 has three distinct memory domains: user,
supervisor and kernel. The KSOS Kernel (and nothing else) resides in the kernel
domain. The two process portions reside in the user and supervisor domains
respectively. The user mode UNIX system calls are vectored to the UNIX Emulator
which performs the internal functions and Kernel calls necessary to emulate the

Version 1.4

call. Because the UNIX Emulator 1is not verified, it cannot be used in any
trusted services. In these cases, the user mode portion is not used. The pro-
gram performing the trusted service resides in the supervisor domain. Figure 2
shows the relationship of the KSOS components.

IS

User Programs| untrusted .

\ USER MODE (may include | NKSR .
Kernel calls})]| .
I ®ss s s s
SUPERVISOR |
MODE UNIX EMULATOR |trusted NKSR

KERNEL MODE SECURITY KERNEL

(NKSR: Non-Kernel Security-Related Software)
Figure 2. Functional Components of KSOS
3.1 The KSOS Security Kernel

Viewed as an abstract machine, the Kernel’s function 1is to create the
objects of its interface (processes, process segments, files, devices, and sub~
types) from the basic hardware resources of the system, and to mediate all
access attempts to these objects. The Kernel is the heart of the security pro-
tection features of KSOS. The Kernel 1s a simple operating system that controls |
access to the protected objects of the system. The Kernel must allocate the
sharable resources of the computer (e.g. cpu time, disk space). Due to 1limita-
tions of the PDP~11/70, the Kernel manages all devices.

The Kernel enforces three distinct types of access checking. The first is
the enforcement of DoD security policy. This checking is the verification of
that fact that the user has the proper clearance and need-to-know to for reading
the information (the "simple security property'"), and that information cannot be
downgraded by writing it to a file at a lower security level (the '"security *-
property"). The second type is the enforcement of an integrity policy described
in [Biba 75]. Integrity is a mechanism for protecting system data bases, pro-
grams, etc. against modification while allowing them to be read by any process.
It is formally defined to be the mathematical dual of the security model. Ve
have found this 1integrity model to be overly restrictive, as its originator
suspected. However, it does provide an additional, essential dimension of pro-
tection. Development of a more effective integrity model would seem to be a
meaningful research topic.

The third type of access checking performed by the Kernel is discretionary
access checking. Unlike the first two types of checking, the discretionary
access checking is completely under the control of the user. The wuser may at
his discretion permit or deny access by other users to the objects he owns.
KSOS enforces a discretionary access policy similar to that of UNIX. For each
| object there are (logically) nine bits that specify read, write, and
, execute/search access by the owner, others in the same group as the object, and

Versinn 1.4
[-124-

r —— o . W

all others. We recognize that this discretionary access policy has limitations
when compared to more sophisticated schemes, such as the access control lists
used in Multics. However, it is simple, and requires a small fraction of the
support mechanisms needed for access control lists.

The Kernel supports five different types of objects:

a. processes

b. process segments

c. files

d. devices

e. file subtypes
All Kernel objects have the same type of name called a SEID (Secure Entity IDen-
tifier). Further, every object, regardless of its type, has a block of informa-
tion associated with it that includes all the information needed by the Kernel
to mediate access attempts to the object. This block is called the "type

independent" information. The type independent information includes:

a. the security classification category (UNCLASSIFIED | CONFIDENTIAL | SECRET
| TOP SECRET)

b. the security compartment set (e.g. NOFORN, special need-to~know compart-
ments)

i c. the integrity classification category (USER | OPERATOR | ADMINISTRATOR)

i d. the integrity compartment set (presently always null)

e. the owner of the object (a user and a group)

f. the discretionary access information

Because objects, regardless of the object type, have homogeneous type indepen-
dent information, access checking by the Kermel is greatly simplified. All that
must be checked is that information may flow from the source to the destination.
For example, if a process wishes to read a file, the source is the file and the
destination is the process. In the KSOS Kernel, two functions perform all the
access checking (one for security and integrity checking and one for discretion-

ary access checking).

3.1.1 Processes

Processes are the only active agents in the KSOS design. To adequately
emulate UNIX, KSOS processes must be cheap and plentiful. For example, each
UNIX command is run as a separate process. Processes in KSOS will require only
modest amounts of Kernel resources. Most of the Kernel data for a process will
be swapped in and out with the process, reducing the amount of locked down Ker-
nel memory space for the process tables.

Version l.4
~125-

oo B ———— N

Processes may possess privileges that enable them to perform functions that
require reduced checking by the Kernel (e.g. changing the classification of a
file) or which may require that additional checking be performed in the process
(e.g. logically mounting part of the file system). The privileges that may be
glven to a process have been designed following the concept of "least
privilege". That is, the granularity of the privileges is quite fine, and quite
specific. Many service processes possess only a single privilege, and many
privileges are possessed by only one process. Thus, the KSOS Kernel is designed
to create encapsulated environments for critical functions. Privileges are
obtained from the process image file (in UNIX the "a.out" file, in other systems
this has been called a load module) from which the process was initialized. Two
Kernel calls, K _invoke and K _spawn, are used for the controlled invocation of
privileged software. K_invoke functions by replacing the entire process with a
user-specified intermediary process. For the invocation of trusted software,
this intermediary is a trusted "bootstrap" that in turn, replaces itself with
the requested process image file, and sets the privileges of the process from
the values in the image file. K_spawn performs the same function in a new pro-
cess created as part of the K_spawn function. For both K invoke and K_spawn,
the user specifies the intermediary process image to be used. The 'bootstrap"
image discussed above is one choice. For other applications it may be desirable
to have other possibilities for the intermediary, so that specific trusted ser-~
vice functions could be invoked very rapidly.

In addition to the K spawn mechanism, new processes may be created by the
K fork call, which is similar to the UNIX fork call. K_fork creates a "clone"
of the caller, a new process that is an exact copy of the caller. The only
difference between the two processes (parent and child) is the return value from
the K fork call. Such a mechanism is required for the accurate emulation of the
UNIX fork call.

Processes normally run at a single security level. The only exception to
this is the part of the Non-Kernel System Software that changes the user’s work-~
ing security level. For inherently multi-level applications, the preferred
design would be to create a trusted multiplex/demultiplex ("mux/demux") process
which directs commands and i/0o to processes running at each level needed. This
would be preferable to having these per-level functions performed within one
process which changes its level because such a process would be larger and more
complicated than the mux/demux process. Verification of the correctness of a
process becomes significantly more difficult as the process size and complexity
increases. One example of thlis preferred architecture is the KSOS network
interface. A small trusted process separates the multi-level data stream from
the network into several streams. Each stream has data of only one security
level in it. The mono-level streams from the processes are similarly combined
by the trusted process into a single, multi-level stream.

Standard UNIX is acknowledged to be deficient in the area of Inter-Process
Communication (IPC). KSOS provides significant improvements in this area. The
Kernel supports both an event IPC mechanism and shared segments. The event
mechanism allows one process to send a message to another process, and (option~
ally) to cause the receiving process to be interrupted analogously to receiving
a hardware interrupt. The full set of security checks is performed for each IPC
attempt. That is, information must be able to flow from the sender to the reci~
plent, and the recipient must have permitted such information flow. Finally, a

Version 1.4
~-126-~

process may enable and disable the pseudo interrupt mechanism, so that it will
not be interrupted during some critical operation. (Shared segment IPC is dis-
cussed below.)

3.1.2 Process Segments

A process segment is a portion of the virtual address space of a process.
The process segment 1is not tied to the native memory management hardware of a
particular machine. The KSOS process segment may be of any size from a
hardware-limited lower bound wup to the entire virtual address space of a pro-
cess. A process may have only some of its segments actually mapped into its
address space. At its creation the segment may be declared to be sharable, in
which case other processes can "rendezvous" with it and map it 1into their
address spaces. This allows for verv high bandwidth communication between the
processes. Naturally, they must estabiish a protocol that guarantees that the
segment will not be corrupted through unsequenced use. The process may elect to
have only some of its segments actually mapped into its address space. In par-
ticular, several segments for the same part of the address space could exist.
This mechanism is used by the trusted mux/demux processes discussed above. The
data segments are shared between the trusted mux/demux and the processes servic-
ing each logical stream. The mux/demux maps in a particular segment to a well
known 1location and puts/extracts the data for that stream into/out of the seg-
ment.

One other use for shared segments is shared text (program) segments. It is
possible to have a pure text segment shared between multiple processes, thus
reducing the overall memory requirements for the system. KSOS allows a segment
to be locked in memory, or to be retained in the swap area for faster accessing.
The designer of a KSOS-based system is offered considerable latitude in trading
space for time.

3.1.3 Files and Devices

The Kernel file structure is flat and uniform. That is, there are no Ker-
nel assumptions about the internal structure or contents of files. Directories
and other higher level constructs are mechanized outside the Kernel. The UNIX
Emulator creates UNIX-like directories by interpreting the contents of Kernel
files. This allows a designer working directly with the Kernel to create a dif-
ferent type of directory structure if desired. Kernel files are accessed by
blocks. There is no Kernel buffering of file i/0. Rather, the i/o 1s done
directly into the requesting user’s address space. Kernel i/o is synchronous,
that is, the call does not return to the user until the i/o is completed. This
is mitigated by the shared segment IPC which lets another process wait for the
i/o to complete. We are currently studying the requirements for and the impact
of asynchronous i/o.

Kernel devices are like a special type of file, as in UNIX. Terminals have 1
only the lowest 1level echoing support in the Kernel. Higher level functions i
like erase/kill processing are done outside the Kernel. i

KSOS supports removable file volumes. The mechanism is similar to the UNIX
mount mechanism with some significant additions for protection. Because of the
possibility for removing a volume, files are limited in size to one volume.

Version 1.4
-127-

Presently the design allows for support of at least 300 Mbyte disks, with exten-
sibility to 600 and 1200 Mbyte disks possible. These large disks may be parti-
tioned into one or more independent extents, referred to as "mini-disks". It is
possible to use a mini-~disk as a device rather than as file system volume. This
allows for very high performance i1/o. The cost is that the process must mechan-
ize for itself whatever structure is wishes for the raw disk device. Naturally,
use of a given mini-disk as a raw device precludes its simultaneous use as a
file system and vice versa.

3.1l.4 Subtypes

The KSOS subtype mechanism is one of its more novel features. The subtype
mechanism is designed to allow the selective encapsulation of a class of files.
Each file is a member of a subtype class. 'Normal' files are in the null sub~
type class. Files which are UNIX directories are in the "UNIX directory'" sub-
type class. The accesses to files in a given subtype class may be restricted.
For example, the subtype restriction on UNIX directories is that anyone may read
a directory, but only a process whose effective user ID is the Directory Manager
may write them. These subtype restrictions are in addition to the other types
of access checking (security, integrity and discretionary). The access restric-
tions for a given subtype apply to all files of that subtype. To update a UNIX
directory, the requesting process will K spawn another, new process that exe-
cutes the (privileged) Directory Manager program. This new process will perform
the requested modification if possible. The mechanics of how this occurs are
discussed below.

There are many other possibilities for using subtypes. For example, they
could allow "peaceful coexistence" of two separate directory structures as might
occur if there were two different Emulators, say one for UNIX and one for
another operating system. Subtypes could also be used to control what could be
done to files that mechanized the internal structure of a data base management
system. Only processes that were known to correctly manipulate the structure
would be allowed to change it. The subtype mechanism provides the KSOS Kernel
with a significant type extension feature in that it lets the Kernel support
encapsulation and control of objects without having the Kernel be cognizant of
the syntax and semantics of the object.

3.1.5 Secure Terminal Interface

In a secure system it is necessary to have an "unspoofable" path to trusted
services. ("Spoofing" occurs when an unprivileged user process pretends to be a
privileged process. For example, a nefarious user starts a process that imi-
tates the login sequence, and waits for an unsuspecting victim to type in his
password.) In KSOS each terminal is (logically) two devices, the normal termi-
nal device and the secure device. Only privileged Non-Kernel System Software is
able to use the secure device. When the user types a reserved attention charac-
ter (currently BREAK), the normal path is blocked, and the character stream is
switched to the secure path. Listening on the secure path is a service process
which will cause the desired secure service to be performed. Because the normal
path is blocked, rather than killing off any process using it, it 1is possible
for the wuser to start doing something, temporarily abandon it while requesting
some secure service, and resume the activity after the secure service 1is com-
pleted. This 1is the mechanism by which the user is able to change his working

Version l.4
-128-

security level.
3.1.6 Auditing

DoD security policy requires that certain security~related events be cap-
tured for auditing purposes. In KSOS this occurs in two ways. The Kernel cap-
tures the events it knows about and generates an IPC message to the Audit Cap-
ture process. The second mechanism is that the Non-Kernel System Software cap-
tures the event. This second case is necessary because the Kernel cannot tell
that certain significant events, like a user login, have occurred. The Audit
Capture process does only a minimal amount of processing and then simply places
the event record into an audit log. Although it is not within the scope of the
current KSOS contract, this audit log could be processed to look for suspicious
(sequences of) events.

3.2 The UNIX Emulator

The UNIX Emulator is almost completely defined by its two interfaces. It
must transform the system calls of the UNIX interface into sequences of Kernel
calls. 1In the design KSOS a serious attempt was made to get a good '"impedance
match" between the Emulator and the Kernel, while not having the Kernel be
strongly UNIX-dependent. This means that the Emulator is fairly straight-
forward.

The UNIX Emulator is "untrusted", that is, it has no special privileges.
Thus, individual KSOS sites may modify their UNIX Emulator to provide additional
functions. One of the major strengths of UNIX has been that it was easy to
modify to adapt it to the needs of a particular installation. This flexibility
has been retained in KSOS.

3.2.1 UNIX Directory Management

One of the major functions of the Emulator is the creation of the UNIX file
system from the more primitive file system provided by the Kernel. The Emulator
caches the block i/o supported by the Kernel to provide the byte stream i/o sup-
ported by the UNIX interface. The Emulator also is where UNIX directories are
managed. The final design of the UNIX directory management function 1is the
result of a long series of (occasionally heated) debates on where directories
would be mechanized. 1Initially they were to be completely managed by the Emula-
tor. However, this was prior to the birth of the subtype notion, and there was
no way to guarantee the integrity of the directory structure. In particular,
trusted software could not depend upon the directory structure. Then it was
proposed to move part or all of the directory management function into the Ker-
nel. This seemed to solve the integrity problem, but opened a new and more
serious problem of making the Kernel cognizant of the structure and semantics of
directory files, and thereby making the Kernel very UNIX-specific. Finally, the
subtype idea was proposed. The Kernel would know that directories were 'spe-
cial”, and would aid in the preservation of their integrity. However, the Ker-
nel would not be aware of the internal structure or semantics of directories.

The current design has the Emulator performing all the directory interpre-
tation functions (i.e. recursively searching for names in directories), but
writing directories is only done by the Directory Manager. The Directory

Version 1.4

Manager 1s a program that 1s K_spawn’ed into execution whenever an Emulator
needs to modify a directory. It starts its life running as the user "dir_mgr"
who owns the directory subtype. After getting permission for write access to
directory subtyped objects, the Directory Manager reverts its identity to that
of the requesting user. From there on, the the Kernel will enforce security,
integrity, and discretionary access checking. Thus, the user cannot trick the
Directory Manager into modifying a directory that the user cannot access. This
architecture may be criticized as being too slow, since creating a new process
via K_spawn 1is moderately time consuming. However, measurements on one of our
UNIX systems in a software development environment suggest that modifications of
directories 1s a fairly infrequent occurrence.

3.2.2 Computer Network Support

The Emulator contains the bulk of the support for the computer network
interface. KSOS will '"speak" Version 4 of the Transmission Control Protocol
(TCP) (Postel 78b] including the Internet Datagram Layer [Postel 78al. This
protocol appears to be on 1its way to becoming a future standard within DoD.
There are no present plans to support other protocols, in particular, the
Arpanet Host to Host Protocol will not be supported at this time.

The basic structure of the KSOS network interface was discussed above.
There is a Network Daemon which handles the Internet Datagram protocol, and
enough of the TCP to separate the i/o stream from the network into separate
streams for each connection. In each Emulator is the majority of the TCP func-
tionality. All of the functions relating to sequence number maintenance, window
maintenance, acknowledgement, and retransmission are in the Emulator. This is
possible because these are per connection functions, and need not be globally
managed. Although no networks presently exist that can handle multiple security
levels, this architecture envisages their development and is designed to support
them. To support a multi-level network, the Network Daemon would be trusted, so
it could handle the multi-level stream to/from the network. The remainder of
the TCP functions performed by the Emulator would be untrusted, since they are
at only one level.

3.3 The Non-Kernel System Software

The purpose of this component of the KSOS system is to provide the software
tools to support a KSOS system. The Non-Kernel System Software is divided into
four groups:

a. Secure User Services: software that manipulates the security levels of
users and files. Also included in this class are all functions that
require a secure ("unspoofable") path to the service.

b. System Operation Services: software that performs continuing services for
the system, such as the Network Daemon, line printer spooling and inter-
user mail.

c. System Maintenance Services: software that performs occasional services
primarily in the area of checking and repairing the consistency of the file
system. Also included are the system generation functions. Individual
KSOS sites can generate their system to suit the hardware configuration

Version 1.4

available.

d. System Administrative Services: software that aids the System Administra-
tor 1in controlling the system. Our goal has been that the System Adminis-
trator need not be a computer expert to perform his functions.

The Non-Kernel System Software described is a minimally complete set. Clearly
there are large numbers of additional utilities that would be desirable. It is
expected that this class will be supplemented extensively as KSOS matures.

4. KSOS Application Considerations

There are two broad classes of KSOS applications, each with different con-
siderations. The first 1is applications that utilize the full KSOS system, i.e.
applications based upon UNIX. KSOS should appear to these applications to be
only slightly different than a standard UNIX operating system. Because KSOS
provides a UNIX-like interface, meaningful secure applications can be built
using the existing software. UNIX is one of the best systems in existence for
the creation of new products by novel combinations of existing packages, and
KSOS will preserve this flexibility. Such applications can, however, be made
easier in some cases via the direct use of KSOS Kernel calls. All programs may
issue Kernel calls directly, but they should be careful in their use lest there
be undesirable interference with the Emulator.

The second class of applications are those which do not use the UNIX Emula-
tor, but which use either a different Emulator or which use the Kernel directly
without an Emulator. The Kernel provides many features that make it an attrac-
tive operating system in its own right. It offers excellent i/o performance, a
range of IPC options, and many features that ease the design of multi-level
applications. Because the Kernel 1is "UNIX-flavored" without being heavily
UNIX-dependent, it is possible to create application environments that are an
amalgamation of the features provided by different operating systems.

KSOS facilitates the creation of encapsulated environments that can be used
for a variety of purposes. This encapsulation allows objects to be manipulated
only by software known to perform correctly. In many cases only a small part of
a multi-level application actually deals with data at different security levels.
By encapsulation of these functions in a small trusted process, it 1is possible
to build multi-level applications that minimize the amount of trusted (and
therefore expensive) code.

5. Summary

The KSOS project is an extremely significant one in the field of secure
systems. It 1is moving a great deal of technology from the research community
into production development. Naturally, such bold steps are not without risk.
The project has blended established methods with these novel ones to minimize
this risk. KSOS offers both provable security and the potential for performance
close to that of a standard UNIX system. Its underlying design facilitates the
creation of a wide range of applications based on the system. All major mile-
stones have been met to date, and the project appears to be making acceptable

Version l.4

progress towards its goals.

6. Acknowledgements

KSOS is being created by an exceptionally talented and dedicated team. 1t
is a pleasure to acknowledge the contributions of the following people: Gerry
Barksdale, Tom Berson, Ken Biba, Paul Drongowski, and Mark Gang. Ford Aerospace
has had SRI International as a subcontractor in the areas of formal methodology;
Richard Feiertag, Peter Neumann, Larry Robinson and Olivier Roubine have been of
significant help in using and understanding the Hierarchical Design Methodology.
An important acknowledgement must be made to the Government team on KSOS: Dan
Edwards, Ed Burke (MITRE Corp.), Jerry Gann (formerly of MITRE Corp.), Ken Shot-
ting, Pete Tasker (MITRE Corp.), Howie Weiss, and John Woodward (MITRE Corp.).
It is a pleasure to work with such a knowledgeable and hard working team. Steve
Walker now of the Office of the Secretary of Defense, but formerly of ARPA has
been one of the leaders of the Government’s secure systems research. His
efforts made the KSOS project possible. Finally, credit must be given to Ken
Thompson and Dennis Ritchie of Bell Laboratories for the creation of UNIX. We
still marvel at the sophistication and elegance of their producte.

7. References

This list includes several KSOS deliverable documents not referenced in the
texte.

[A-Specs 78] "KSOS System Specification (Type A)", WDL-TR7808 Revision 1,
Ford Aerospace and Communications Corporation, Palo Alto, CA (July 1978).

[Bell and LaPadula 73] Bell, D.E. and LaPadula, L.J., "Secure Computer Sys~
tems", ESD-TR-73-278, Volume I-III, MITRE Corporation, Bedford, MA
(November 1973 - June 1974).

[Biba 75] Biba, K.J., "Integrity Considerations for Secure Computer Sys~
tems", MTR-3153, MITRE Corporation, Bedford, MA (June 1975).

(Emulator 78] "KSOS UNIX Emulator Computer Program Development Specification
(Type B5)", WDL-TR7933, Ford Aerospace and Communications Corporation, Palo
Alto, CA (September 1978).

[(Hoare 69] Hoare, C.A.R. "An Axiomatic Basis for Computer Programming",
CACM, Volume 12, Number 10, pp 576-583, (October 1969).

{Hoare 72] Hoare, C.A.R. "Proof of Correctness of Data Representations",
Acta Informatica, Volume 1, pp 271-281, (1972).

(Impl 78] '"KSOS Implementation Plan", WDL-TR7799, Ford Aerospace and Commun-
ications Corporation, Palo Alto, CA (March 1978).

(Kampe et al. 77] Kampe, M., Kline, C., Popek, G., and Walton, E., "The UCLA

Data Secure UNIX Operating System", Technical Report, University of Cali-
fornia at Los Angeles, Los Angeles, CA (July 1977).

Version 1.4

-132-

e -4 g it

{Kernel 78) '"KSOS Security Kernel Computer Program Development Specification

(Type BS5)", WDL-TR7932, Ford Aerospace and Communications Corporation, Palo
Alto, CA (September 1978).

[Maint 78] "KSOS Maintenance and Support Plan', WDL-~TR7810, Ford Aerospace
and Communications Corporation, Palo Alto, CA (March 1978).

(MITRE 77] "Draft BS Specifications for the MITRE Secure UNIX Prototype'",
Private Communication, 1977.

[NKSR 78] "KSOS Non-Kernel Security-Related Software Computer Program

Development Specification (Type BS)", WDL-TR7934, Ford Aerospace and Com-
munications Corporation, Palo Alto, CA (September 1978).

[Parnas 72] Parnas, D.L., "A Technique for Software Module Specification
with Examples'", CACM, Valume 15, Number 5, pp 330 - 336 (May 1972).

[Postel 78a] Postel, J.B., "Internetwork Protocol Specification', Version 4,

Information Sciences Institute, University of Southern California, Marina
del Rey, CA (September 1978).

[Postel 78b] Postel, J.B., "Specification of Internetwork Transmission Con-
trol Protocol - TCP Version 4", Information Sciences Institute, University
of Southern California, Marina del Rey, CA (September 1978).

[Ritchie 74} Ritchie, D.M. and Thompson, K., "The UNIX Timesharing System",
CACM, Volume 17, Number 5, pp 365 - 375 (May 1974).

[Robinson et al. 77] Robinson, L., Levitt, K.N., Neumann, P.G., and Saxena,
A.R., "A Formal Methodology for the Design of Operating System Software,"

in R.T. Yeh (ed.), Current Trends in Programming Methodology, Vol. 1,
Prentice-Hall (April 1977).

[(Roubine and Robinson 77] Roubine,0., L.Robinson, Special Reference Manual,

3rd ed., Technical Report CSG-45, SRI International, Menlo Park, CA (Janu-
ary 1977).

(Verif 78] "KSOS Verification Plan", WDL-TR7809, Ford Aerospace and Communi-
cations Corporation, Palo Alto, CA (March 1978).

Version 1.4

-133-

T

KSOS Executive Summary

Ford Aerospace & Communications Corporation
Western Development Laboratories
Software Technology Department
3939 Fabian Vay
Palo Alto, California 94303

ABSTRACT

KSOS is the Kernelized Secure Operating System designed for
DARPA. KSOS 1is reguired to be externally compatible with Bell
Telephone Laboratories’ UNIX*tm, to be efficient, to satisfy cer-
tain multilevel security requirements, and to be demonstrably
secure. This document provides a summary of the progress ob-
tained in Phase 1 of the KSOS development by Ford Aerospace and
its subcontractor SRI.International under contract MDAY03-77-~C-
0333. It gives an overview of the Phase I work, including a sum-
mary of the documentation delivered under the contract. It also
outlines plans for the Phase II work.

CRGANIZATION OF TiiIS SUMMARY

This document is organized as follows.

Introduction

The
The

Basic Design
Hierarchical Development Methodology, HDM

Security

The
The
The
The
The
The
The
The
The

Role of Specifications

Role of the Programming Language

Role of Verification

Role of On-line Tools

Kernel

Trusted Non-Kernel Security-Related Software
Emulator

Nontrusted Non-Kernel Security-Related Software
Work Proposed for Phase IT

Preliminary Evaluation
Guide to Documentation

—

e e .

INTRODUCTION

The long-term goal of the KSOS effort is to develop a commercially viable
computer operating system for the DEC PDP-11/70 that
* s compatible with the Bell Telephone Laboratories® UNIX*tm,
* is capable of efficiency comparable to standard UNIX*tm,
* enforces multilevel security and integrity, and
* is demonstrably secure.

In order to achieve this goal, the Phase 1 effort described here has
designed a trusted Security Kernel and associated trusted Non-Kernel
Security-Related Software, such that the trusted software:
* provides a suitable basis for KSO0S;
* jintrinsically supports multilevel security/integrity,
* can be used by itself to support non-UNIX*tm-based applications,and
* is able to run efficiently on a DEC PDP-11/70. *

The security of the overall KSOS system must be convincingly demon-
strated. This will be accomplished by formal verification of the security pro-~
perties of the design (i.e., the formal specifications) and selected proofs of
correspondence between the delivered code and the design. In additionm, KSOS
will be rigorously tested to lend added confidence in the in the system.

Although the Security Kermnel is intended initially to support an Emulator
providing a UNIX*tm-like user environwent, the Kernel has been designed to be
used by itself, or with an Emulator providing a differeat user environnent.
Typical wuses of the the Kernel by itself would be dedicated secure systems
such as wmilitary message processing systems, or secure network front ends.

THE BASIC DESIGN

The design of KSOS consists of a Kernel (KS0S.K) that supports multilevel
security, the trusted Non-Kernel Security~Related Software (KSOS.NKSR.T) which
though outside of the Kernel, is trusted to deviate internally from the wmul-
tilevel security policy to provide critical system functions, an Emulator
-(KSOS.E) that provides compatibility with the existing UNIX*tm user interface,
and the untrusted Non~Kernel Security-Related Software (KSOS.NKSR.U) providing
user~level services such as secure mail and 1line printer spoolinge. As a
consequence of the requirement for a convincing demonstration of KS0S secu-
rity, the trusted software should be reasonably small ~-in order to simplify
the verification effort. However, it is neither necessary nor desirable that
all security-related software be a part of the Kernel, particularly because
some of the security policy may vary from one application to another. The
design supports various security-related functions outside of the Kernel. Any
meapingful verification of security must also consider any of the Non~Kernel
Security-Related Software which is trusted to violate the strict sense of mul-
tilevel security and integrity. The FACC KSOS design encourages the minimiza-
tion of such trusted software, although it makes explicit the efficiency tra~
deoffs that arise. Note that in the design discussed here the UNIX*tm Emula-
tor software has essentially no effect on security, and therefore does not
require verification.

| -135-

- e g - ——r - - o o
i 2an ——
-~

A slightly simplified block diagram of the design approach 1is given 1in
Figure 1, showing which levels of the design depend on which others and which
design levels must be trusted. A given design level in this figure is permit-
ted to depend only on lower design levels. In principle, a particular design
level may call any lower design level directly; however, in the actual imple-
mentation there will be some restrictions imposed, as noted below.

As seen in the figure, the Non-Kernel Security-Related software for KSOS
is divided into two design levels, one (KSOS.NKSR.T) trusted to violate
selected parts of the multilevel security model in a controllable way, the
other (KSOS.NKSR.U) not requiring any trust at all. The Emulator is seen to
be nontrusted. The figure shows that the trusted KSOS.NKSR.T can «call wupon
the Kernel. It also implies that the Emulator can call upon KSO0S.K and
KSOS.NKSR.T. Similarly, the nontrusted KSOS.NKSR can call upon the Kernel,
the trusted KSOS.NKSR.T and KSOS.E. User applications (i.e., programs or
dedicated environments) may in principle use the Kernel, the Emulator, and the
Non-Kernel Security-Related Software, although in the actual implementation
they can be constrained, e.g., not to use KS0S.K directly. By this means,
certain Kernel primitives may be restricted to use by the trusted software,
and certain Non-Kernel Security-Related functions may be restricted to use by
administrative officers or system daemons. On the PDP 11/70, KSOS.K will run
in Kernel mode, while the trusted KSOS.NKSR and KSOS.E will run in supervisor
mode. Other systems than KSOS could be built using KS0S.K, which might or
might not use portions of KSOS.NKSR and KSOS.E. Implementations of KSOS or
Just KSOS.K on other hardware are also anticipated. In a generalized domain
architecture, Figure 1 is illustrative of how the system might be partitioned
into more than just three states.

It is an engineering judgment as to what shou)Jd be in the Kernel, as well
as to what the specific Kernel interface should be, in order best to satisfy
the system requirements. The approach taken in the FACC Phase I design is
expected to provide significant advantages. 1In this design, the Kernel pro-
vides generality suitable for the implementation of UNIX*tm and other applica-
tions, while also being modest in size and conducive to efficient implementa-

~tions for these applications. This arises from the use within the Kernel of

compile-time definable types (similar to the extended type mechanism in SRI’s
Provably Secure Operating System, PSOS). 1In KSOS, this mechanism is wused to
support multilevel secure directories, without requiring the entire directory
manager to be inside the Kernel. 1In the case of directories, a file "subtype"
is supported by the Kernel, while the divectory manager is a part of
KSOS.NKSR.T. This allows the integrity of the directories to be improved
while continuing to allow the Emulator to be untrusted.

The methodology employed throughout facilitates verification that the
entire system satisfies the desired multilevel security properties. This
verification is cowposed of two parts. First, that the design is counsistent
with the formal requirements, and second that the implementation is completely
consistent with the design. As a result of the latter verification, the secu-
rity of the implementation can be effectively demonstrated. Moreover, note
that much more is thereby verified since the consistency proofs of the imple-
mentation guarantee not just secure operation but also correct operation,
assuming the specifications are correct. That is, the demonstration that pro-
grams are consistent with their formal specifications guarantees that the
implementation does what is specified, no more, and no less. It should be

-136-

® 0000 v K+T+E+U+A 8600000

| UNIX*tm Applications |

| Untrusted Al
| e e |
User |
mode V. K+T4+E+U
b b— !
|Non-Kernel Security-Related Software]|
| Untrusted portion |
| KSOS «NKSR.U Ul
T ——— -l
cesseessassosssesas |
V R+THE
|] "
| UNIX*tm Emulator | |
| Untrusted | Not
| KSOS.E E| Trusted
| SU—
Supervisor i cssscescesessssascnanas
mode V K4T
| -- - -] Trusted
]Non-Kernel Security-Related Software] |
| Trusted portion | v
| KSOS «NKSR.T T
s —
etesacstctttscanans |
vV K
I |
| Security Kernel i
Kernel | trusted |
mode | KSOS.K K|
I I
Figure 1

Block Diagram of KSOS Components

Note: K,T,E,U,A denote the functions provided by the five
levels in upward order, respectively. The interfaces
potentially visible at each level are cunulative upwards,
e.g., as indicated by K+T+E+U+A. In actual implementation
there may be restrictions on function visibility.

remarked that this two step verification, first of the design and then of the
implementation, may reduce the overall verification effort. It also allows
strong statements to be made about the system design whether or not full code
proofs are undertaken.

The work of this contract has taken a strong systems viewpoint toward the
overall development of the Security Kernel, the Non-Kernel Security-Related
software, and the UNIX*tm Emulator. This viewpoint is focused around the use
of a formal methodology for system design, implementation, and verification
that has been developed at SRI International, and used previously on various

-137-

o

system designs. The methodology is called the Hierarchical Development Metho-
dology (HDH). Its use permits a wide collection of needs arising throughout
the development and subsequent use of the Security Kernel and its surrounding
KSOS software to be carefully addressed or anticipated. As a consequence, the
resulting KSOS design provides:

* multilevel security;

* provable security;

* high reliability and availability;

* high performance (operational efficiency) of both the Kernel and the
UNIX*tm Emulator;

* flexibility of the Kernel design to be readily applicable to other
hardware bases besides the PDP-11/70 (e.g., to the Honeywell SCOMP);

* generality of the Kernel design to be applicable to other security-
relevant applications instead of or in addition to KSOS, e.g., a dedi-
cated message processing system;

* controllability of the maintenance and evolution of the Kernel and Non-
Kernel Security-Related software;

* ease of maintenance, evolution, and particularization to installation
needs of the Emulator software, without adverse impact on the overall
system security.

* ease of reverification following changes to the trusted portions of the
system (KSOS.K and KSOS.NKSR.T).

It should be noted that the goal of provable security has significant
implications that would affect any development process, with respect to the
design, the choice of specification language, the choice of the programming
language, and the choice of the verification methodology. However, these are
all addressed by iDM and by the approach taken here.

THE HIERARCHICAL DEVELOPMENT METHODOLOGY, HDM

The formal methodology used in Phase I and proposed for use in the Phase
II development of the KSOS system is summarized below.
An overall systems viewpoint is maintained throughout.

* A unified methodology is used for design, implementation, and verifica-
tion. This greatly increases the understandability of the design, the
ease of implementation, and the verifiability of the resulting system.
It 1includes the use of a formal specification language called SPECIAL (A
SPECIfication and Assertion Language).

* The methodology encourages a hierarchically decomposed design, which
itself has strong implications on initialization, shutdown, recovery from
hardware and software errors, maintenance, and verification.

* A programming language is to be used that is well suited to both system
programming and to eventual program verification.

* Verification is separated into two distinct stages, the first showing the
correspondence between the formal specifications of the design and the
formal requirements for multilevel security, the second showing the con-
sistency of the programs with their specifications. The combination of
these stages assures that the implementation completely satisfies the
multilevel security requirements. This approach increases the understan-
dability of the proofs, and also simplifies them.

* Advanced but well-debugged development tools supporting HDM have been
used and will be used wherever appropriate. Existing tools used in Phase
I include checkers for the hierarchical structure, the specifications,
and the mappings between the state representations at different levels.

~138-

LR T i

An existing theorem prover and simplifier are expected to be wused in
Phase 11 to provide verification tools supporting proofs of correspon-
dence betwcen specifications and the multilevel security model. Related
tools =-- some existing and some under development -- may be used to pro-
vide illustrative proofs of program correctness, as appropriate.

The methodology attempts to unify the entire development process. It
decouples design and implementation into distinguishable stages, providing a
formal definition of the design and a formal basis for implementation and
proof. This approach considers the entire development process in a formal way
and permits formal proofs at each stage in the process. Even in the absence
of proofs, this approach seems tc greatly increase the understandability and
precision with which a design can be expressed, and the ability to evaluate
the reasonableness of such a design with respect to stated desired properties
of the system. The methodology has considerable wutility throughout the
development of KSOS, in Phase I, in Phase II, and in any additional efforts to
provide proofs of implementation correctness. It also makes a positive c¢on=-
tribution to various further related tasks, such as verification of the con-
sistency of any subsequent changes affecting security, as well as implemention
of the design on other hardware and verification of the resulting system. In
the latter case, specifications for most of the Kernel (except for the machine
and device-dependent levels) could remain largely intact, and the specifica-
tions for KSOS.E and KSOS.NKSR.T could remain unchanged. Thus the demonstra-
tion of the security of the design can carry over directly to the new imple-
mentation. The verification of consistency between code and specifications
might also carry over in part, depending on the programming language used.

SECURITY

The desired multilevel security requirements demand that information at a
particular security level may not move downward to a lower security level.
Because of the syntax of SPECIAL, the proofs that these requirements (formally
stated) are actually satisfied by the specifications follow largely from sim-
ple (i.e., mostly syntactic) checks on the specifications. Following such
proofs, any implementation consistent with the specifications would itself
satisfy the security requirements. That a design proved to be secure is
itself correctly implemented then follows completely from proofs of the con-
sistency of the specifications with their implementing programs and harvdware.
(The dependence on correct hardware is made quite explicit by this approach.)
It is of course also desirable to demonstrate "t the specifications --cven
if proved to be secure--~ actually describe ¢h 'sired effects. This task is
aided by the understandability of the sper -~ ¢ s, and by testing of the
resulting implementation. For example, . he specifications for the top-level
(user-interface) can be compared with the behavior of existing UNIX*tm in the
case of the Enulator. The resulting system can be compared with exisiting
UNIX*tm by running programs and applications environments on both systems.

The design for the Kernel permits all of the Kernel primitives to satisfy
the desired security properties completely under normal usage by users. A few
relaxations of this strict behavior are necessary to support the trusted Non-
Kernel Security-Related software, and are confined to the KSOS.NKSR.T by the
controlled distribution of minimal privilege. These isolated relaxations can
be shown to satisfy a specific subset of the security properties, in a com-
pletely controllable way, and to be masked completely by the trusted Non-
Kernel Security-Related software.

i T man e =

THE ROLE OF SPECIFICATIONS

Formal specifications by themselves provide a significant advance in the
state of the art of software system development. They provide a concise and
precise functional statement of exactly what any external or internal inter-
face 1is expected to do. They enforce abstraction on the design that conse-
quently simplifies implementation, debugging, system integration, and mainte-
nance. They greatly enhance the understandability of a design. They provide
a forun for discussion of design issues. Their wunderstandability encourages
the manual discovery of design errors. They also make possible the intuitive
verification of certain desired properties that the design should satisfy.

THE ROLE OF THE PROGRAMMING LANGUAGE

It is desired that the programming language used for the Kernel aand the
Non-Kernel Security-Related software have certain strong properties. (The
Emulator may also take advantage of this language.) The desired properties
include such things as

* adequate compiler support for generating efiicient code,
suitable constructs for control and data abstraction,
type safety,
ability to support multiprogramming, and
ability to handle machine-dependency when necessary.

* * * *

Some of these desired properties (notably type safety and support of
abstraction) contribute significantly to the verifiability of the resulting
, code. They also contribute to the avoidance of many characteristic security
flaws. At the moment, Fuclid appears to be highly appropriate, with an
extended Modula as an altcrnate choice. (It appears that some of the competi~-
tive DoD/1 languages would be appropriate, if adequate support were avail-
able.)

THE ROLE OF VERIFICATION

As noted above, specifications support proofs of specification proper-
ties, and also facilitate proofs of program consistency with the specifica-
tions. The ability to state and prove properties about a design (as
represented by a set of specifications) -~ before that design is cver iwmple-
mented -- will have a significant impact on the system development. Neverthe-
less, no system can justifiably be thought to be secure unless appropriate
properties of its implementation can also be proved. On the basis of the work
to date, proving that the specifications for the KSOS design satisfy the
required multilevel security properties can be straightforward and accom- i
plished 1largely by automated tools =-- many of which have already becn
developed at SRI. In addition, although more complex than such design proofs,
proving the consistency of implementation with respect to the specifications
is now becoming a realistic task, especially with the emergence of recent
theoretical advances and the prospect of suitable on-line tools. Furthermore,
the expected use of a language like Euclid or extended Modula would very help-
ful. In addition, the proposed use of review and testing is expected to
increase the confidence in the implementation.

-140-

THE ROLE OF ON-LINE TOOLS

The role of computer tools is indicated above, with respect to the syn-~
tactic checking of specifications, the verification of the security of the
design, and the eventual verification of the consistency of programs with the
specifications. Experience in attempting to develop secure systems in the
past indicates that an enormous amount of mind~numbing effort would be
required under conventional approaches, and even then there is considerable
doubt as to whether security flaws still remain. The approach outlined here,
with its judicious use of on-line tools that support the Hierarchical Develop-
ment Methodology, is expected to result in considerably more confidence in the
security of the resulting system than is possible with conventional, largely §
manual approaches. Further, the automated approach promises to be far more ;
cost-effective. For example, during the exercise of writing of formal specifi~
cations for UNIX*tm, various previously unknown flaws in that system were
detected. In the writing of formal specifications for the KSOS Kernel, vari-
ous minor flaws were detected by the hierarchical interface checker and the
specification analyzer. These flaws, many of which might give rise to insccu-
rity in the implementation, have been detected and removed during this early
stage of design. This is particularly valuable for various minor typographi-
cal errors in the specifications which otherwise might result much Jlater in
significant flaws in the resulting system. In addition, because of the struc-
ture and constraints of the methodology, flaws in the implementation of even a
correct design may also often be detected by the implementation tools, e.g.,
the compiler and simple consistency checks.

THE KERNEL

The Security Kernel (KSO0S.K) is structured into a hierarchically ordered
set of modules, each of which depends (for its implementation and for its
correctness) solely on lower-level modules. The set of accessible Kernel
calls has been chosen to be powerful and efficient for the implementation of
KSOS, but general enough for the implementation of other applications (e.g.,
dedicated). These Kernel calls support (among other things) the creation and
deletion of files and processes, the reading and writing of files, inter-
process communication, and the protected invocation of trusted software.

The Kernei has a "UNIX-flavor" to it. It was designed with the actual
implementation of the lower levels of UNIX*tm in mind. This, of course, doe¢s
not mean that the Kernel 1is suitable only for creation of UNIX*tm uscr
environments. Significant efforts have been made to make the Kernel both
machine independent and UNIX*tm independent. The Kernel design incorporates
many of the concepts from the existing prototype "Secure UNIX*tw" implementa-
tions. Its main departure from the prototypes is that the FACC design does not
employ virtual memory. This decision was reached because existing UNIX*tm
software has very large "working sets that minimize the value of a wvirtual
memory architecturc. Also motivating against a virtual mewory architecture are
the long delays associated with process environment switches on a PDP-11/70.
Satisfying page faults, even 1f the page 1is in core could significantly
degrade system performance.

The Kernel internally supports objects of program-definable types and
capability addressing. These are intended for wuse within the Kerunel for
creating Kernel-supported objects such as multilevel secure directories
without requiring any of the directory mechanism to reside within the Kernel

-141-

TS A o

-

~-- the directory manager is in KSOS.NKSR.T. An overview of a proposcd design
decomposition of the Kernel f{ollows, from highest level of abstraction to the
lowest.
* Kernel calls
process operators
interprocess communication
file capabilities
file subtypes
process segments
process states
mountable file systems
file contents
file states
multilevel security
privilege control
device-independent functions
type~independent information
secure entity names

*F X R % N N X N X X % ¥ F

THE TRUSTED NON-KERNEL SECURITY-RELATED SOFTWARE

Only part of the Non-Kernel Security-Related Software must be trusted

(and hence wultimately verified). Although most of the Non-Kernel Security-
Related functions must contain a small amount of trusted code, most of the
code supporting these functions need not be trusted. A spectrum of design
decisions can be made either distributing or centralizing the trusted portion
of each function. The FACC design permits the portion which must be trusted
to be kept small. The Non-Kernel Security-Related Software as a whole sup-
ports the following functions.

* system startup and shutdown
login and logout
password changer
user security-level changer
file security-level changer
virtual terminal handler
mount and unmount
line-printer daemon
file system maintenance, dump/restore
system administration

* % % ¥ X F H H

As noted below, the spooler and the mailer are examples of security-
related programs that do not need to be trusted, because of the constraints
imposed by the Kernel and the trusted Non-Kernel Security-Related software.
The nontrusted functions need not be verified. Further simplifying the verifi-
cation effort of the trusted portions is the fact that they are composed of
autonomous modules which can be verified independently.

THE EMULATOR

The KSOS Emulator interface supports the UNIX*tm calls, and implements
them in terms of the KSOS Kcermel. It is protected from the user, and the Ker-
nel is protected from it. 1In general, it calls the Kernel directly rather
than going through the trusted Non-Kernel Security-Related software, except
for certain directory operations. In essence, the Emulator does whatever it
has to in order to provide compatibility with the desired UNIX*tm calls.

-142-

However, certain features of UNIX*tm have been remnved from the user interface
to KSOS, in the interests of providing a sccure system. Most notable among
these is the '"superuser" facility. Also, the checks on certain user functions
have been strengthened.

The Emulator ccntains the bulk of the support for the interface to the
computer network. Only the multiplexing and demultiplexing of the data streams
to and from the network are trusted. The flow control and data stream
integrity functions. of the network are untrusted and are supported on a per-
process basis by the Enmulator. This architecture is extremely attractive for a
number of reasons. First the size of the trusted software is reduced to a
minipum. Second, the flow control is truly end-to~-end. Third, overall struc-
ture requires minimal Kernel support. Finally, the basic architecture can be
easily adapted to support other networks protocols.

THE NONTRUSTED NON-KERNEI, SECURITY-RELATED SOFTWARE

As noted above, many of the Non-Kernel Security-Related functions require
some trusted code, although most of the code for the implementation of these
functions need not be trusted. In addition, the spooler and the mail facility
-—- although in principle security related -- can operate entirely as untrusted
programs. The design thus allows great flexibility in its implementation. It
is also possible to easily extend the functions provided by the Non-Kernel
Security-Related software because they are not hard coded into the Kernel.

THE WORK PROPOSED FOR PHAST 11

The aim of the proposed Phase II work is to develop an effective imple-
mention of the design Phase 1 KSOS design, to demonstrate that this design
completely satisfies the desired properties of multilevel security, and to
demonstrate the essential correctness of the implementation by illustrative
rather than exhaustive means. On the basis of the design that has emerged
from Phase I, and the structured methodological approach being used throughout
the development, there is reasonable evidence that this aim can be accom-
plished in a timely and cost-effective way. The proposed work for Phase II
will also provide detailed illustrations of how the implementation can be
demonstrated to be correct, that is, proven consistent with its specifica-
tions.

PRELIMINARY EVALUATION

The approach used here affords various significant advantages over previ-
ous competing approaches, but avoids incurring many of the risks typically
associated with high-technology attempts to advance the state-of-the-art.
Considerable success has already resulted from the use of this approach, and
such success is justifiably expected to continue.

From a systems viewpoint, the work described here 1is novel in many
respects. These include the following.

* KSOS will be the first full use of the formal methodology (lIDM) for a
complete system development, However, HDM has been well tested in the
design stage of several previous projects.

* The HDM methodology can accoumodate the verification of a larger amount
of Kernel and other trusted software than can other approaches. This is
due to two orthogonal decounpositions: the decomposition of the

-143-

verification process into stages (e.g., specification-to-model proofs,
folloved by code consistency proofs) and the decomposition of the design
into hierarchical levels of abstraction. These both simplify the verifi-
cation effort significantly. The automated tools offer a manyfold
further reduction in effort. In addition, the approach is dircctly
applicable to the verification of the security of the KNon-Kernel
Security-Related software.

KSOS is likely to 1involve the first use in the development of a
production~quality computer system of a modern programming language
(Euclid, or possibly Modula) highly appropriate for such an ¢ffort. Note
that each of these languages is a counservatively designed variant of an
existing well-established programming language (Pascal).

This will be the first implementation of a production system that
includes a Security Kernel designed to be provably secure, and inmple-
mented using a programming language suitable for such v